18.440: Lecture 39

Review: practice problems

Scott Sheffield

MIT

Markov chains

- Alice and Bob share a home with a bathroom, a walk-in closet, and 2 towels.
- Each morning a fair coin decide which of the two showers first.
- After Bob showers, if there is at least one towel in the bathroom, Bob uses the towel and leaves it draped over a chair in the walk-in closet. If there is no towel in the bathroom, Bob grumpily goes to the walk-in closet, dries off there, and leaves the towel in the walk-in closet
- When Alice showers, she first checks to see if at least one towel is present. If a towel is present, she dries off with that towel and returns it to the bathroom towel rack. Otherwise, she cheerfully retrieves both towels from the walk-in closet, then showers, dries off and leaves both towels on the rack.
- Problem: describe towel-distribution evolution as a Markov chain and determine (over the long term) on what fraction of days Bob emerges from the shower to find no towel.

Markov chains - answers

- Let state $0,1,2$ denote bathroom towel number.
- Shower state change Bob: $2 \rightarrow 1,1 \rightarrow 0,0 \rightarrow 0$.
- Shower state change Alice: $2 \rightarrow 2,1 \rightarrow 1,0 \rightarrow 2$.
- Morning state change $\mathrm{AB}: 2 \rightarrow 1,1 \rightarrow 0,0 \rightarrow 1$.
- Morning state change BA: $2 \rightarrow 1,1 \rightarrow 2,0 \rightarrow 2$.
- Markov chain matrix:

$$
M=\left(\begin{array}{lll}
0 & .5 & .5 \\
.5 & 0 & .5 \\
0 & 1 & 0
\end{array}\right)
$$

- Row vector π such that $\pi M=\pi$ (with components of π summing to one) is ($\left.\begin{array}{lll}\frac{2}{9} & \frac{4}{9} & \frac{1}{3}\end{array}\right)$.
- Bob finds no towel only if morning starts in state zero and Bob goes first. Over long term Bob finds no towel $\frac{2}{9} \times \frac{1}{2}=\frac{1}{9}$ fraction of the time.

Optional stopping, martingales, central limit theorem

Suppose that $X_{1}, X_{2}, X_{3}, \ldots$ is an infinite sequence of independent random variables which are each equal to 1 with probability $1 / 2$ and -1 with probability $1 / 2$. Let $Y_{n}=\sum_{i=1}^{n} X_{i}$. Answer the following:

- What is the the probability that Y_{n} reaches -25 before the first time that it reaches 5 ?
- Use the central limit theorem to approximate the probability that $Y_{9000000}$ is greater than 6000.

Optional stopping, martingales, central limit theorem answers

- $p_{-25} 25+p_{5} 5=0$ and $p_{-25}+p_{5}=1$. Solving, we obtain $p_{-25}=1 / 6$ and $p_{5}=5 / 6$.
- One standard deviation is $\sqrt{9000000}=3000$. We want probability to be 2 standard deviations above mean. Should be about $\int_{2}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$.

Martingales

- Let X_{i} be independent random variables with mean zero. In which of the cases below is the sequence Y_{i} necessarily a martingale?
- $Y_{n}=\sum_{i=1}^{n} i X_{i}$
- $Y_{n}=\sum_{i=1}^{n=1} X_{i}^{2}-n$
- $Y_{n}=\prod_{i=1}^{n}\left(1+X_{i}\right)$
- $Y_{n}=\prod_{i=1}^{n}\left(X_{i}-1\right)$

Martingales

- Yes, no, yes, no.

Calculations like those needed for Black-Scholes derivation

- Let X be a normal random variable with mean 0 and variance 1. Compute the following (you may use the function $\Phi(a):=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$ in your answers):
- $E\left[e^{3 x-3}\right]$.
- $E\left[e^{X} 1_{X \in(a, b)}\right]$ for fixed constants $a<b$.

Calculations like those needed for Black-Scholes derivation - answers

$$
\begin{aligned}
E\left[e^{3 x-3}\right] & =\int_{-\infty}^{\infty} e^{3 x-3} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}-6 x+6}{2}} d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}-6 x+9}{2}} e^{3 / 2} d x \\
& =e^{3 / 2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-3)^{2}}{2}} d x \\
& =e^{3 / 2}
\end{aligned}
$$

Calculations like those needed for Black-Scholes derivation - answers

$$
\begin{aligned}
E\left[e^{x} 1_{X \in(a, b)}\right] & =\int_{a}^{b} e^{x} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \\
& =\int_{a}^{b} e^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \\
& =\int_{a}^{b} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}-2 x+1-1}{2}} d x \\
& =e^{1 / 2} \int_{a}^{b} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-1)^{2}}{2}} d x \\
& =e^{1 / 2} \int_{a-1}^{b-1} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \\
& =e^{1 / 2}(\Phi(b-1)-\Phi(a-1))
\end{aligned}
$$

Thanks for taking the course!

- FRIENDLY FAREWELL:

Good night, good night! Parting is such sweet sorrow
That I shall say good night till it be morrow.
Romeo And Juliet Act 2, Scene 2

- Morrow = May 20.
- UNFRIENDLY FAREWELL:

Go make some new disaster,
That's what I'm counting on.
You're someone else's problem.
Now I only want you gone.
Portal 2 Closing Song

- SERIOUS PRACTICAL FAREWELL:

Consider 18.443 (statistics), 18.424 (entropy/information) 18.445 (Markov chains), 18.472 (math finance), 18.175 (grad probability), 18.176 (martingales, stochastic processes), 18.177 (special topics), 18.338 (random matrices), 18.466 (grad statistics), many non-18 courses. See you May 20!

MIT OpenCourseWare
http://ocw.mit.edu

18.440 Probability and Random Variables

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

