18.440: Lecture 39

Review: practice problems

Scott Sheffield

MIT

Markov chains

- Alice and Bob share a home with a bathroom, a walk-in closet, and 2 towels.
- ▶ Each morning a fair coin decide which of the two showers first.
- ▶ After Bob showers, if there is at least one towel in the bathroom, Bob uses the towel and leaves it draped over a chair in the walk-in closet. If there is no towel in the bathroom, Bob grumpily goes to the walk-in closet, dries off there, and leaves the towel in the walk-in closet
- ▶ When Alice showers, she first checks to see if at least one towel is present. If a towel is present, she dries off with that towel and returns it to the bathroom towel rack. Otherwise, she cheerfully retrieves both towels from the walk-in closet, then showers, dries off and leaves both towels on the rack.
- ▶ **Problem:** describe towel-distribution evolution as a Markov chain and determine (over the long term) on what fraction of days Bob emerges from the shower to find no towel.

Markov chains — answers

- ▶ Let state 0, 1, 2 denote bathroom towel number.
- ▶ Shower state change Bob: $2 \rightarrow 1$, $1 \rightarrow 0$, $0 \rightarrow 0$.
- ▶ Shower state change Alice: $2 \rightarrow 2$, $1 \rightarrow 1$, $0 \rightarrow 2$.
- ▶ Morning state change AB: $2 \rightarrow 1$, $1 \rightarrow 0$, $0 \rightarrow 1$.
- ▶ Morning state change BA: $2 \rightarrow 1$, $1 \rightarrow 2$, $0 \rightarrow 2$.
- Markov chain matrix:

$$M = \begin{pmatrix} 0 & .5 & .5 \\ .5 & 0 & .5 \\ 0 & 1 & 0 \end{pmatrix}$$

- ► Row vector π such that $\pi M = \pi$ (with components of π summing to one) is $\begin{pmatrix} \frac{2}{9} & \frac{4}{9} & \frac{1}{3} \end{pmatrix}$.
- ▶ Bob finds no towel only if morning starts in state zero and Bob goes first. Over long term Bob finds no towel $\frac{2}{9} \times \frac{1}{2} = \frac{1}{9}$ fraction of the time.

Optional stopping, martingales, central limit theorem

Suppose that X_1, X_2, X_3, \ldots is an infinite sequence of independent random variables which are each equal to 1 with probability 1/2 and -1 with probability 1/2. Let $Y_n = \sum_{i=1}^n X_i$. Answer the following:

- ▶ What is the the probability that Y_n reaches -25 before the first time that it reaches 5?
- ▶ Use the central limit theorem to approximate the probability that $Y_{9000000}$ is greater than 6000.

Optional stopping, martingales, central limit theorem — answers

- ▶ $p_{-25}25 + p_55 = 0$ and $p_{-25} + p_5 = 1$. Solving, we obtain $p_{-25} = 1/6$ and $p_5 = 5/6$.
- ▶ One standard deviation is $\sqrt{9000000} = 3000$. We want probability to be 2 standard deviations above mean. Should be about $\int_2^\infty \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$.

Martingales

Let X_i be independent random variables with mean zero. In which of the cases below is the sequence Y_i necessarily a martingale?

►
$$Y_n = \sum_{i=1}^n iX_i$$

► $Y_n = \sum_{i=1}^n X_i^2 - n$

$$Y_n = \sum_{i=1}^n X_i^2 - n$$

$$Y_n = \prod_{i=1}^n (1+X_i)$$

$$Y_n = \prod_{i=1}^{n} (X_i - 1)$$

Martingales

▶ Yes, no, yes, no.

7

Calculations like those needed for Black-Scholes derivation

- Let X be a normal random variable with mean 0 and variance 1. Compute the following (you may use the function $\Phi(a) := \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$ in your answers):
 - ► $E[e^{3X-3}]$.
 - $E[e^X 1_{X \in (a,b)}]$ for fixed constants a < b.

8

Calculations like those needed for Black-Scholes derivation – answers

$$E[e^{3X-3}] = \int_{-\infty}^{\infty} e^{3x-3} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2 - 6x + 6}{2}} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2 - 6x + 9}{2}} e^{3/2} dx$$

$$= e^{3/2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-3)^2}{2}} dx$$

$$= e^{3/2}$$

Calculations like those needed for Black-Scholes derivation – answers

$$E[e^{X}1_{X\in(a,b)}] = \int_{a}^{b} e^{x} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx$$

$$= \int_{a}^{b} e^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

$$= \int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}-2x+1-1}{2}} dx$$

$$= e^{1/2} \int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-1)^{2}}{2}} dx$$

$$= e^{1/2} \int_{a-1}^{b-1} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

$$= e^{1/2} (\Phi(b-1) - \Phi(a-1))$$

Thanks for taking the course!

FRIENDLY FAREWELL:

Good night, good night! Parting is such sweet sorrow That I shall say good night till it be morrow. Romeo And Juliet Act 2. Scene 2

▶ Morrow = May 20.

UNFRIENDLY FAREWELL:

Go make some new disaster, That's what I'm counting on. You're someone else's problem. Now I only want you gone.

Portal 2 Closing Song

SERIOUS PRACTICAL FAREWELL:

Consider 18.443 (statistics), 18.424 (entropy/information) 18.445 (Markov chains), 18.472 (math finance), 18.175 (grad probability), 18.176 (martingales, stochastic processes), 18.177 (special topics), 18.338 (random matrices), 18.466 (grad statistics), many non-18 courses. See you May 20!

MIT OpenCourseWare http://ocw.mit.edu

18.440 Probability and Random Variables

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.