18.440: Lecture 18
 Uniform random variables

Scott Sheffield

MIT

Outline

Uniform random variable on $[0,1]$

Uniform random variable on $[\alpha, \beta]$

Motivation and examples

Outline

Uniform random variable on $[0,1]$

Uniform random variable on $[\alpha, \beta]$

Motivation and examples

Recall continuous random variable definitions

- Say X is a continuous random variable if there exists a probability density function $f=f_{X}$ on \mathbb{R} such that $P\{X \in B\}=\int_{B} f(x) d x:=\int 1_{B}(x) f(x) d x$.
- We may assume $\int_{\mathbb{R}} f(x) d x=\int_{-\infty}^{\infty} f(x) d x=1$ and f is non-negative.
- Probability of interval $[a, b]$ is given by $\int_{a}^{b} f(x) d x$, the area under f between a and b.
- Probability of any single point is zero.
- Define cumulative distribution function $F(a)=F_{X}(a):=P\{X<a\}=P\{X \leq a\}=\int_{-\infty}^{a} f(x) d x$.

Uniform random variables on $[0,1]$

- Suppose X is a random variable with probability density function $f(x)= \begin{cases}1 & x \in[0,1] \\ 0 & x \notin[0,1] .\end{cases}$
- Then for any $0 \leq a \leq b \leq 1$ we have $P\{X \in[a, b]\}=b-a$.
- Intuition: all locations along the interval $[0,1]$ equally likely.
- Say that X is a uniform random variable on $[0,1]$ or that X is sampled uniformly from $[0,1]$.

Properties of uniform random variable on $[0,1]$

- Suppose X is a random variable with probability density
function $f(x)= \begin{cases}1 & x \in[0,1] \\ 0 & x \notin[0,1] .\end{cases}$
- What is $E[X]$?
- Guess $1 / 2$ (since $1 / 2$ is, you know, in the middle).
- Indeed, $\int_{-\infty}^{\infty} f(x) x d x=\int_{0}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=1 / 2$.
- What would you guess the variance is? Expected square of distance from $1 / 2$?
- It's obviously less than $1 / 4$, but how much less?
- $E\left[X^{2}\right]=\int_{-\infty}^{\infty} f(x) x^{2} d x=\int_{0}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=1 / 3$.
- So $\operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}=1 / 3-1 / 4=1 / 12$.

Properties of uniform random variable on $[0,1]$

- Suppose X is a random variable with probability density function $f(x)= \begin{cases}1 & x \in[0,1] \\ 0 & x \notin[0,1]\end{cases}$
- What is the cumulative distribution function $F_{X}(a)=P\{X<a\} ?$
- $F_{X}(a)=\left\{\begin{array}{ll}0 & a<0 \\ a & a \in[0,1] \\ 1 & a>1\end{array}\right.$.
- What is the general moment $E\left[X^{k}\right]$ for $k \geq 0$?

Outline

Uniform random variable on $[0,1]$

Uniform random variable on $[\alpha, \beta]$

Motivation and examples

Outline

Uniform random variable on $[0,1]$

Uniform random variable on $[\alpha, \beta]$

Motivation and examples

Uniform random variables on $[\alpha, \beta]$

- Fix $\alpha<\beta$ and suppose X is a random variable with probability density function $f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}$
- Then for any $\alpha \leq a \leq b \leq \beta$ we have $P\{X \in[a, b]\}=\frac{b-a}{\beta-\alpha}$.
- Intuition: all locations along the interval $[\alpha, \beta]$ are equally likely.
- Say that X is a uniform random variable on $[\alpha, \beta]$ or that X is sampled uniformly from $[\alpha, \beta]$.

Properties of uniform random variable on $[0,1]$

- Suppose X is a random variable with probability density

$$
\text { function } f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}
$$

- What is $E[X]$?
- Intuitively, we'd guess the midpoint $\frac{\alpha+\beta}{2}$.
- What's the cleanest way to prove this?
- One approach: let Y be uniform on $[0,1]$ and try to show that $X=(\beta-\alpha) Y+\alpha$ is uniform on $[\alpha, \beta]$.
- Then linearity of

$$
E[X]=(\beta-\alpha) E[Y]+\alpha=(1 / 2)(\beta-\alpha)+\alpha=\frac{\alpha+\beta}{2} .
$$

- Using similar logic, what is the variance $\operatorname{Var}[X]$?
- Answer: $\operatorname{Var}[X]=\operatorname{Var}[(\beta-\alpha) Y+\alpha]=\operatorname{Var}[(\beta-\alpha) Y]=$ $(\beta-\alpha)^{2} \operatorname{Var}[Y]=(\beta-\alpha)^{2} / 12$.

Outline

Uniform random variable on $[0,1]$

Uniform random variable on $[\alpha, \beta]$

Motivation and examples

Outline

Uniform random variable on $[0,1]$
 Uniform random variable on $[\alpha, \beta]$

Motivation and examples

Uniform random variables and percentiles

- Toss $n=300$ million Americans into a hat and pull one out uniformly at random.
- Is the height of the person you choose a uniform random variable?
- Maybe in an approximate sense?
- No.
- Is the percentile of the person I choose uniformly random? In other words, let p be the fraction of people left in the hat whose heights are less than that of the person I choose. Is p, in some approximate sense, a uniform random variable on $[0,1]$?
- The way I defined it, p is uniform from the set $\{0,1 /(n-1), 2 /(n-1), \ldots,(n-2) /(n-1), 1\}$. When n is large, this is kind of like a uniform random variable on $[0,1]$.

Approximately uniform random variables

- Intuition: which of the following should give approximately uniform random variables?
- 1. Toss $n=300$ million Americans into a hat, pull one out uniformly at random, and consider that person's height (in centimeters) modulo one.
- 2. The location of the first raindrop to land on a telephone wire stretched taut between two poles.
- 3. The amount of time you have to wait until the next subway train come (assuming trains come promptly every six minutes and you show up at kind of a random time).
- 4. The amount of time you have to wait until the next subway train (without the parenthetical assumption above).

Approximately uniform random variables

- 5. How about the location of the jump between times 0 and 1 of λ-Poisson point process (which we condition to have exactly one jump between $[0,1])$?
- 6. The location of the ace of spades within a shuffled deck of 52 cards.

MIT OpenCourseWare
http://ocw.mit.edu

18.440 Probability and Random Variables

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

