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Continuous random variables 

�	 Say X is a continuous random variable if there exists a 
probability density function f = fX on R such that   
P{X ∈ B} = f (x)dx := 1B (x)f (x)dx .B   ∞

�	 We may assume R f (x)dx = f (x)dx = 1 and f is−∞ 
non-negative.  b

�	 Probability of interval [a, b] is given by f (x)dx , the area a 
under f between a and b. 

�	 Probability of any single point is zero. 

�	 Define cumulative distribution function  a
F (a) = FX (a) := P{X < a} = P{X ≤ a} = f (x)dx .−∞ 
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Simple example 

1/2 x ∈ [0, 2]
Suppose f (x) = 

0 x  ∈ [0, 2]. 

What is P{X < 3/2}? 

What is P{X = 3/2}? 

What is P{1/2 < X < 3/2}? 

What is P{X ∈ (0, 1) ∪ (3/2, 5)}? 

What is F ? 

We say that X is uniformly distributed on the interval 
[0, 2]. 
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Another example 

x/2 x ∈ [0, 2]
Suppose f (x) = 

0 0  ∈ [0, 2]. 

What is P{X < 3/2}? 

What is P{X = 3/2}? 

What is P{1/2 < X < 3/2}? 

What is F ? 
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Expectations of continuous random variables 

�	 Recall that when X was a discrete random variable, with 
p(x) = P{X = x}, we wrote  

E [X ] = p(x)x . 
x :p(x)>0 

�	 How should we define E [X ] when X is a continuous random 
variable?  ∞

�	 Answer: E [X ] = f (x)xdx .−∞ 
�	 Recall that when X was a discrete random variable, with 

p(x) = P{X = x}, we wrote  
E [g(X )] = p(x)g(x). 

x :p(x)>0 

� What is the analog when X is a continuous random variable?  ∞
�	 Answer: we will write E [g(X )] = f (x)g(x)dx .−∞ 
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Variance of continuous random variables 

Suppose X is a continuous random variable with mean µ. 

We can write Var[X ] = E [(X − µ)2], same as in the discrete 
case. 

Next, if g = g1 + g2 then 
E [g(X )] = g1(x)f (x)dx + g2(x)f (x)dx =[ x 

g1(x) + g2(x) f (x)dx = E [g1(X )] + E [g2(X )]. 

Furthermore, E [ag(X )] = aE [g(X )] when a is a constant. 

Just as in the discrete case, we can expand the variance 
expression as Var[X ] = E [X 2 − 2µX + µ2] and use additivity 
of expectation to say that 

2Var[X ] = E [X 2] − 2µE [X ] + E [µ2] = E [X 2] − 2µ2 + µ =
 
E [X 2] − E [X ]2 .
 

This formula is often useful for calculations.
 

18.440 Lecture 15 

I

I

I ∫ ∫∫
I

I

I

10



�

�
�

�

�
�

Examples 

Suppose that fX (x) = 
1/2 

0 

x ∈ [0, 2] 

x  ∈ [0, 2]. 
. 

What is Var[X ]? 

x/2 x ∈ [0, 2]
Suppose instead that fX (x) = 

0 0  ∈ [0, 2]. 

What is Var[X ]? 
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Uniform measure on [0, 1] 

One of the very simplest probability density functions is 
1 x ∈ [0, 1]

f (x) = . 
0 0  ∈ [0, 1]. 

If B ⊂ [0, 1] is an interval, then P{X ∈ B} is the length of 
that interval. 

Generally, if B ⊂ [0, 1] then P{X ∈ B} = 1dx = 1B (x)dxB 
is the “total volume” or “total length” of the set B.
 

What if B is the set of all rational numbers?
 

How do we mathematically define the volume of an arbitrary
 
set B?
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Do all sets have probabilities? A famous paradox: 

Uniform probability measure on [0, 1) should satisfy
 
translation invariance: If B and a horizontal translation of B
 
are both subsets [0, 1), their probabilities should be equal.
 

Consider wrap-around translations τr (x) = (x + r) mod 1.
 

By translation invariance, τr (B) has same probability as B.
 

Call x , y “equivalent modulo rationals” if x − y is rational
 
(e.g., x = π − 3 and y = π − 9/4). An equivalence class is
 
the set of points in [0, 1) equivalent to some given point.
 

There are uncountably many of these classes.
 

Let A ⊂ [0, 1) contain one point from each class. For each
 
x ∈ [0, 1), there is one a ∈ A such that r = x − a is rational.
 

Then each x in [0, 1) lies in τr (A) for one rational r ∈ [0, 1).
 

Thus [0, 1) = ∪τr (A) as r ranges over rationals in [0, 1).
= 
If P(A) = 0, then P(S) = P(τr (A)) = 0. If P(A) > 0 then r= 
P(S) = P(τr (A)) = ∞. Contradicts P(S) = 1 axiom. r 
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Three ways to get around this 

1. Re-examine axioms of mathematics: the very existence 
of a set A with one element from each equivalence class is 
consequence of so-called axiom of choice. Removing that 
axiom makes paradox goes away, since one can just suppose 
(pretend?) these kinds of sets don’t exist. 

2. Re-examine axioms of probability: Replace countable 
additivity with finite additivity? (Look up Banach-Tarski.) 

3. Keep the axiom of choice and countable additivity but 
don’t define probabilities of all sets: Instead of defining 
P(B) for every subset B of sample space, restrict attention to 
a family of so-called “measurable” sets. 

Most mainstream probability and analysis takes the third 
approach.
 

In practice, sets we care about (e.g., countable unions of
 
points and intervals) tend to be measurable.
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Perspective 

More advanced courses in probability and analysis (such as 
18.125 and 18.175) spend a significant amount of time 
rigorously constructing a class of so-called measurable sets 
and the so-called Lebesgue measure, which assigns a real 
number (a measure) to each of these sets. 

These courses also replace the Riemann integral with the 
so-called Lebesgue integral. 

We will not treat these topics any further in this course. 

We usually limit our attention to probability density functions 
f and sets B for which the ordinary Riemann integral 
1B (x)f (x)dx is well defined. 

Riemann integration is a mathematically rigorous theory. It’s 
just not as robust as Lebesgue integration. 
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