18.440: Lecture 12

Poisson random variables

Scott Sheffield

MIT

Outline

Poisson random variable definition

Poisson random variable properties

Poisson random variable problems

Outline

Poisson random variable definition

Poisson random variable properties

Poisson random variable problems

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?
- How many radioactive particles emitted during a time period in which the expected number emitted is 5 ?
- How many calls to call center during a given minute?
- How many goals scored during a 90 minute soccer game?
- How many notable gaffes during 90 minute debate?
- Key idea for all these examples: Divide time into large number of small increments. Assume that during each increment, there is some small probability of thing happening (independently of other increments).

Remember what e is?

- The number e is defined by $e=\lim _{n \rightarrow \infty}(1+1 / n)^{n}$.
- It's the amount of money that one dollar grows to over a year when you have an interest rate of 100 percent, continuously compounded.
- Similarly, $e^{\lambda}=\lim _{n \rightarrow \infty}(1+\lambda / n)^{n}$.
- It's the amount of money that one dollar grows to over a year when you have an interest rate of 100λ percent, continuously compounded.
- It's also the amount of money that one dollar grows to over λ years when you have an interest rate of 100 percent, continuously compounded.
- Can also change sign: $e^{-\lambda}=\lim _{n \rightarrow \infty}(1-\lambda / n)^{n}$.

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes up heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?
- Answer: $n p=\lambda$.
- Let k be some moderate sized number (say $k=4$). What is the probability that I see exactly k heads?
- Binomial formula:

$$
\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!} p^{k}(1-p)^{n-k} .
$$

- This is approximately $\frac{\lambda^{k}}{k!}(1-p)^{n-k} \approx \frac{\lambda^{k}}{k!} e^{-\lambda}$.
- A Poisson random variable X with parameter λ satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.

Outline

Poisson random variable definition

Poisson random variable properties

Poisson random variable problems
18.440 Lecture 12

Outline

Poisson random variable definition

Poisson random variable properties

Poisson random variable problems

Probabilities sum to one

- A Poisson random variable X with parameter λ satisfies $p(k)=P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- How can we show that $\sum_{k=0}^{\infty} p(k)=1$?
- Use Taylor expansion $e^{\lambda}=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}$.

Expectation

- A Poisson random variable X with parameter λ satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- What is $E[X]$?
- We think of a Poisson random variable as being (roughly) a Bernoulli (n, p) random variable with n very large and $p=\lambda / n$.
- This would suggest $E[X]=\lambda$. Can we show this directly from the formula for $P\{X=k\}$?
- By definition of expectation

$$
E[X]=\sum_{k=0}^{\infty} P\{X=k\} k=\sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda}=\sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!} e^{-\lambda} .
$$

- Setting $j=k-1$, this is $\lambda \sum_{j=0}^{\infty} \frac{\lambda_{j}^{j}}{j!} e^{-\lambda}=\lambda$.

Variance

- Given $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$, what is $\operatorname{Var}[X]$?
- Think of X as (roughly) a Bernoulli (n, p) random variable with n very large and $p=\lambda / n$.
- This suggests $\operatorname{Var}[X] \approx n p q \approx \lambda$ (since $n p \approx \lambda$ and $q=1-p \approx 1$). Can we show directly that $\operatorname{Var}[X]=\lambda$?
- Compute

$$
E\left[X^{2}\right]=\sum_{k=0}^{\infty} P\{X=k\} k^{2}=\sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}=\lambda \sum_{k=1}^{\infty} k \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} .
$$

- Setting $j=k-1$, this is

$$
\lambda\left(\sum_{j=0}^{\infty}(j+1) \frac{\lambda^{j}}{j!} e^{-\lambda}\right)=\lambda E[X+1]=\lambda(\lambda+1)
$$

- Then $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=\lambda(\lambda+1)-\lambda^{2}=\lambda$.

Outline

Poisson random variable definition

Poisson random variable properties

Poisson random variable problems
18.440 Lecture 12

Outline

Poisson random variable definition

Poisson random variable properties

Poisson random variable problems
18.440 Lecture 12

Poisson random variable problems

- A country has an average of 2 plane crashes per year.
- How reasonable is it to assume the number of crashes is Poisson with parameter 2?
- Assuming this, what is the probability of exactly 2 crashes? Of zero crashes? Of four crashes?
- A city has an average of five major earthquakes a century. What is the probability that there is an earthquake in a given decade (assuming the number of earthquakes per decade is Poisson)?
- If both candidates average one major gaffe per debate, what is the probably that the first has at least one major gaffe and the second doesn't? (What assumptions are we making?)
- A casino deals one million five-card poker hands per year. Approximate the probability that there are exactly 2 royal flush hands during a given year.

MIT OpenCourseWare
http://ocw.mit.edu

18.440 Probability and Random Variables

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

