18.440 Practice Midterm 2 Partial Solutions

1. (20 points) Let X and Y be independent Poisson random variables with parameter 1. Compute the following. (Give a correct formula involving sums - does not need to be in closed form.)
(a) The probability mass function for X given that $X+Y=5$.

ANSWER: Write $p(k)=P\{X=k\}=e^{-1} / k$!. Then suppose $x \in\{0,1,2,3,4,5\}$. (Mass function is zero at other values.)
$P\{X=x \mid X+Y=5\}=\frac{P\{X=x, X+Y=5\}}{P\{X+Y=5\}}=\frac{P\{X=x\} P\{Y=5-x\}}{P\{X+Y=5\}}$. This is equal to $\frac{p(x) p(5-x)}{\sum_{j=0}^{5} p(x) p(5-x)}$.
(b) The conditional expectation of Y^{2} given that $X=2 Y$.

ANSWER: Let $y \geq 0$ be an integer. First we compute $P\{Y=y \mid X=2 Y\}=\frac{P\{Y=y, X=2 y\}}{P\{X=2 Y\}}=\frac{p(2 y) p(y)}{\sum_{k=0}^{\infty} p(2 k) p(k)}$. Then we note that the $E\left[Y^{2} \mid X=2 Y\right]=\sum_{y=0}^{\infty} P\{Y=y \mid X=2 Y\} y^{2}$.
(c) The probability mass function for $X-2 Y$ given that $X>2 Y$.

ANSWER: Write $Z=X-2 Y$. Then
$p_{Z}(z)=P\{Z=z\}=\sum_{y=-\infty}^{\infty} P\{Y=y\} P\{X=z+2 y\}=\sum_{y=0}^{\infty} p(y) p(z+2 y)$.
Now for $z>0$ we have $P\{Z=z \mid Z>0\}=\frac{p_{Z}(z)}{P\{Z>0\}}=\frac{p_{Z}(z)}{\sum_{j=1}^{\infty} p_{Z}(j)}$.
(d) The probability that $X=Y$.

ANSWER: $\sum_{k=0}^{\infty} p(k)^{2}$.
2. (15 points) Solve the following:
(a) Let X be a normal random variable with parameters $\left(\mu, \sigma^{2}\right)$ and Y an exponential random variable with parameter λ. Write down the probability density function for $X+Y$.
ANSWER:
$f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} e^{-((a-y)-\mu)^{2} / 2 \sigma^{2}} \lambda e^{-\lambda y} d y$
(b) Compute the moment generating function and characteristic function for the uniform random variable on $[0,5]$.

ANSWER: Generally when X is uniform on (a, b) we have
$M_{X}(t)=\frac{e^{t b}-e^{t a}}{t(b-a)}$ and $\phi_{X}(t)=\frac{e^{i t b}-e^{i t a}}{i t(b-a)}$.
(c) Let X_{1}, \ldots, X_{n} be independent exponential random variables of parameter λ. Let Y be the second largest of the X_{i}. Compute the mean and variance of Y.

ANSWER: This is essentially the radioactive decay problem: how long until $n-1$ of the n particles have decayed. Let T_{k} be time from when $(k-1)$ th particle decays until k th particle decays. Each T_{k} is exponential with parameter $(n+1-k) \lambda$. It has expectation $\frac{1}{(n+1-k) \lambda}$ and variance $\frac{1}{(n+1-k)^{2} \lambda^{2}}$. By additivity of expectation $E\left[\sum_{k=1}^{n-1} T_{k}\right]=\sum_{k=1}^{n-1} E\left[T_{k}\right]$. By independence of the T_{k} we also have $\operatorname{Var}\left[\sum_{k=1}^{n-1} T_{k}\right]=\sum_{k=1}^{n-1} \operatorname{Var}\left[T_{k}\right]$.
3. (10 points)
(a) Suppose that the pair (X, Y) is uniformly distributed on the disc $x^{2}+y^{2} \leq 1$. Find f_{X}, f_{Y}.
ANSWER: $f(x, y)=\frac{1}{\pi}$ on the disc, zero elsewhere. Then for $x \in(-1,1)$ we have $f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\frac{1}{\pi} 2 \sqrt{1-x^{2}}$. Symmetric argument gives $f_{Y}(y)=\frac{1}{\pi} 2 \sqrt{1-y^{2}}$ for $y \in(-1,1)$.
(b) Find also $f_{X^{2}+Y^{2}}$ and $f_{\max (x, y)}$.

ANSWER: Easiest to first calculate $F_{X^{2}+Y^{2}}(a)$ for $a \in[0,1]$. This is $\frac{1}{\pi}$ times the area of the disc of radius r with $r^{2}=a$. Thus $F_{X^{2}+Y^{2}}(a)=\frac{1}{\pi} \pi r^{2}=r^{2}=a$. Conclude that $X^{2}+Y^{2}$ is uniform on $[0,1]$ and $f_{X^{2}+Y^{2}}=1$ on $[0,1]$. I'll skip the $f_{\max (x, y)}$ part since it's a bit messy but you could at least in principle compute $F_{\max (x, y)}(a)=P\{\max (x, y) \leq a\}$ using some trigonometry (computing area of intersection of a quadrant with a circle) and then differentiate to get the density function.
(c) Find the conditional probability density for X given $Y=y$ for $y \in[-1,1]$.
ANSWER: Uniform on $\left(-\sqrt{1-y^{2}},-\sqrt{1-y^{2}}\right)$.
(d) Compute $\mathbb{E}\left[X^{2}+Y^{2}\right]$.

ANSWER: $\frac{1}{2}$, by part (b)
4. (10 points) Suppose that X_{i} are independent random variables which take the values 2 and .5 each with probability $1 / 2$. Let $X=\prod_{i=1}^{n} X_{i}$.
(a) Compute $\mathbb{E} X$.

ANSWER: By independence $E[X]=\prod_{i=1}^{n} E\left[X_{i}\right]=1.25^{n}$.
(b) Estimate the $P\{X>1000\}$ if $n=100$.

ANSWER: Let K be number of times X_{i} is 2 , so that $100-K$ is number of times it is .5 . Then
$X=2^{K} .5^{100-K}=2^{K} / 2^{100-K}=2^{2 K-100}$. Note that $X>1000$ if and only if $2 K-100 \geq 10$, i.e., $K \geq 55$. Now we have a standard binomial problem. What's probability to have at least 55 heads when we toss 100 coins. Standard deviation is $\sqrt{n p q}=5$. So should be roughly $1-\Phi(1)$.
5. (20 points) Suppose X is an exponential random variable with parameter $\lambda_{1}=1, Y$ is an exponential random variable with $\lambda_{2}=2$, and Z is an exponential random variable with parameter $\lambda_{3}=3$. Assume X and Y and Z are independent and compute the following:
(a) The probability density function f_{X+Y}

ANSWER:

$$
f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y=\int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1}(a-y)} \lambda_{2} e^{-\lambda_{2} y} d y
$$

(b) $\operatorname{Cov}(X Y, X+Y)$

ANSWER: $E[X Y(X+Y)]-E[X Y] E[X+Y]=$
$E\left[X^{2} Y\right]+E\left[X Y^{2}\right]-E[X Y](E[X]+E[Y])=$
$E\left[X^{2}\right] E[Y]+E[X] E\left[Y^{2}\right]-E[X] E[Y] E[X]-E[X] E[Y] E[Y]$. Recall
that $E[X]=1 / \lambda_{1}$ and $E\left[X^{2}\right]=2 / \lambda_{2}^{2}$ and $E[Y]=1 / \lambda_{2}$ and
$E\left[Y^{2}\right]=2 / \lambda_{2}^{2}$.
(c) $\mathbb{E}[\max \{X, Y, Z\}]$

ANSWER: Perhaps the easiest thing is to first compute

$$
F_{\max \{X, Y, Z\}}(a)=P\{\max \{X, Y, Z\} \leq a\}=F_{X}(a) F_{Y}(z) F_{Z}(a)=\left(1-e^{\lambda_{1} a}\right)\left(1-e^{\lambda_{2} a}\right)\left(1-e^{\lambda_{3} a}\right)
$$

Then recall the formula $E\left[F_{\max \{X, Y, Z\}}\right]=\int_{0}^{\infty} 1-F_{\max \{X, Y, Z\}}(a) d a$.
(d) $\operatorname{Var}[\min \{X, Y, Z\}]$

ANSWER: Minimum is exponential with parameter $\lambda_{1}+\lambda_{2}+\lambda_{3}=6$. So variance is $1 / 6^{2}=1 / 36$.
(e) The correlation coefficient $\rho(\min \{X, Y, Z\}, \max \{X, Y, Z\})$.

ANSWER: This one is a bit tricky. Idea is to argue first that $\min \{X, Y, Z\}$ and $\max \{X, Y, Z\}-\min \{X, Y, Z\}$ are independent. Thus by bilinearity of covariance, we have $\operatorname{Cov}(\min \{X, Y, Z\}, \max \{X, Y, Z\})=\operatorname{Varmin}\{X, Y, Z\}=1 / 36$, using the result of (d). From here we use the formula for ρ (though it requires input from (c), which we skipped).
6. (10 points) Suppose X_{1}, \ldots, X_{10} be independent standard normal random variables. For each $i \in\{2,3, \ldots, 9\}$ we say that i is a local maximum if $X_{i}>X_{i+1}$ and $X_{i}>X_{i-1}$. Let N be the number of local maxima. Compute
(a) The expectation of N.

ANSWER: Each $i \in\{2,3, \ldots, 9\}$ has a $1 / 3$ change to be a local maximum. (Basically, X_{i} has to be the largest among itself and two neighbors.) So $E[N]=8 / 3$.
(b) The variance of N.

ANSWER: We need to compute $E\left[N^{2}\right]$. Letting N_{i} be 1 if i is a local maximum, zero otherwise, we have $E\left[N^{2}\right]=\sum_{i=2}^{9} \sum_{j=2}^{9} E\left[N_{i} N_{j}\right]$. This sum includes
(a) 8 terms of form $E\left[N_{i} N_{i}\right]$, which are each equal to $1 / 3$.
(b) 14 terms of form $E\left[N_{i} N_{i+1}\right]$ or $E\left[N_{i} N_{i-1}\right]$ which are each equal to zero (to neighbors can't both be local maxima).
(c) 12 terms of form $E\left[N_{i} N_{i+2}\right]$ or $E\left[N_{i} N_{i-2}\right]$. Consider: five guys in a row, we need the probability that the second and fourth are both local maxima. Have $1 / 5$ chance that second is largest among these five, and given that, have $1 / 3$ chance that fourth is local maximum. So $1 / 15$ chance in case second is largest, similarly $1 / 15$ in case fourth is largest, so $E\left[N_{i} N_{i+2}\right]=2 / 15$ over all.
(d) $64-8-14-12=30$ remaining terms.

Sum all these up to get $E\left[N^{2}\right]$. Then $\operatorname{Var}\left[N^{2}\right]=E\left[N^{2}\right]-E[N]^{2}$.
(c) The correlation coefficient $\rho\left(N, X_{1}\right)$.

ANSWER: Here $\rho\left(N, X_{1}\right)=\operatorname{Cov}\left(N, X_{1}\right) / \sqrt{\operatorname{Var}(N) \operatorname{Var}\left(X_{1}\right)}$. Hard part remaining is to compute $\operatorname{Cov}\left(N, X_{1}\right)$. By bilinearity of expectation, this is $\sum_{j=2}^{9} \operatorname{Cov}\left(N_{j}, X_{1}\right)$. These terms are all zero except when $j=2$. So we just need to find $\operatorname{Cov}\left(N_{2}, X_{1}\right)$. Key step to compute $E\left[N_{2} X_{1}\right]$. If f is standard normal density, this can be written as $\iiint f(x) f(y) f(z) x$ where the integral is taken over the portion of R^{2} for which $y>x$ and $y>z$. I think I'll skip the part where we actually compute the integral.
7. (15 points) Give the name and an explicit formula for the density or mass function of $\sum_{i=1}^{n} X_{i}$ when the X_{i} are
(a) Independent normal with parameter μ, σ^{2}.

ANSWER: normal with parameters $\left(n \mu, n \sigma^{2}\right)$
(b) Independent exponential with parameter λ.

ANSWER: gamma with parameters n and λ
(c) Independent geometric with parameter p.

ANSWER: negative binomial with parameter p.
(d) Independent Poisson with parameter λ

ANSWER: Poisson with parameter $n \lambda$.
(e) Independent Bernoulli with parameter p.

ANSWER: binomial with parameters (n, p).

MIT OpenCourseWare
http://ocw.mit.edu

18.440 Probability and Random Variables

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

