18.440 Practice Midterm Two: 50 minutes, 100 points Carefully and clearly show your work on each problem (without writing anything that is technically not true) and put a box around each of your final computations.

1. (20 points) Let X and Y be independent Poisson random variables with parameter 1. Compute the following. (Give a correct formula involving sums — does not need to be in closed form.)

- (a) The probability mass function for X given that X + Y = 5.
- (b) The conditional expectation of Y^2 given that X = 2Y.
- (c) The probability mass function for X 2Y given that X > 2Y.
- (d) The probability that X = Y.
- 2. (15 points) Solve the following:
 - (a) Let X be a normal random variable with parameters (μ, σ^2) and Y an exponential random variable with parameter λ . Write down the probability density function for X + Y.
 - (b) Compute the moment generating function and characteristic function for the uniform random variable on [0, 5].
 - (c) Let X_1, \ldots, X_n be independent exponential random variables of parameter λ . Let Y be the second largest of the X_i . Compute the mean and variance of Y.
- 3. (10 points)
 - (a) Suppose that the pair (X, Y) is uniformly distributed on the disc $x^2 + y^2 \leq 1$. Find f_X , f_Y .
 - (b) Find also $f_{X^2+Y^2}$ and $f_{\max(x,y)}$.
 - (c) Find the conditional probability density for X given Y = y for $y \in [-1, 1]$.
- (d) Compute $\mathbb{E}[X^2 + Y^2]$.

4. (10 points) Suppose that X_i are independent random variables which take the values 2 and .5 each with probability 1/2. Let $X = \prod_{i=1}^{n} X_i$.

- (a) Compute $\mathbb{E}X$.
- (b) Estimate the $P\{X > 1000\}$ if n = 100.

5. (20 points) Suppose X is an exponential random variable with parameter $\lambda_1 = 1$, Y is an exponential random variable with $\lambda_2 = 2$, and Z is an exponential random variable with parameter $\lambda_3 = 3$. Assume X and Y and Z are independent and compute the following:

- (a) The probability density function f_{X+Y}
- (b) Cov(XY, X + Y)
- (c) $\mathbb{E}[\max\{X, Y, Z\}]$
- (d) $\operatorname{Var}[\min\{X, Y, Z\}]$
- (e) The correlation coefficient $\rho(\min\{X, Y, Z\}, \max\{X, Y, Z\})$.

6. (10 points) Suppose X_1, \ldots, X_{10} be independent standard normal random variables. For each $i \in \{2, 3, \ldots, 9\}$ we say that i is a local maximum if $X_i > X_{i+1}$ and $X_i > X_{i-1}$. Let N be the number of local maxima. Compute

- (a) The expectation of N.
- (b) The variance of N.
- (c) The correlation coefficient $\rho(N, X_1)$.

7. (15 points) Give the name and an explicit formula for the density or mass function of $\sum_{i=1}^{n} X_i$ when the X_i are

- (a) Independent normal with parameter μ, σ^2 .
- (b) Independent exponential with parameter λ .
- (c) Independent geometric with parameter p.
- (d) Independent Poisson with parameter λ
- (e) Independent Bernoulli with parameter p.

18.440 Probability and Random Variables Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.