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Abstract 

Markov chain Monte Carlo (MCMC) techniques have been used with some success in bioin­
formatics [LAB+93]. However, these results rely on heuristic estimates of a Markov chain’s 
mixing time. Without provable results, we cannot accurately judge the quality of an algorithm 
or the output it produces. 

Our goal is to remedy this situation in the context of the motif­finding problem. Using 
combinatorial techniques from theoretical computer science [JS96], we design a Markov chain 
for sampling motifs, provide rigorous bounds on its mixing time, and describe the quality of the 
motifs it is likely to produce. 

1 Introduction 

1.1 Motif Finding 

Genes are regulated by transcription factors, which bind at locations upstream of the genes and 
repress their transcription. Groups of related genes often have similar upstream sequences, called 
motifs, which cause the genes to all be expressed or repressed at the same time, depending on the 
presence of the transcription factor. If we suspect that a set of genes are all regulated by the same 
transcription factor, we can test this hypothesis by searching for substrings within the upstream 
regions that are as similar as possible. This is the essence of the motif­finding problem. We note 
that this is a simplification of the model considered in [LAB+93], but this simpler model retains 
the spirit of the problem and will prove to be more amenable to analysis. 

More abstractly, motif­finding can be phrased as an optimization problem: suppose we are given 
n sequences s1, s2, . . . , sn, and a length k. We would like to find indices x = (x1, . . . , xn) such that 
the substrings si[xi . . . xi + k − 1] are the “most similar” according to some measure of similarity. 
Of course, the problem can be solved by iterating over all x, but the size of this space is exponential 
in n. Instead, we would prefer an algorithm which finds a best (or an almost­best) motif, and runs 
in time polynomial in n. 

1.2 The Markov Chain Monte Carlo Method 

The Markov chain Monte Carlo (MCMC) method is a general sampling technique which has found 
uses in statistics, mechanics, computer science, and other fields. A Markov chain defines a “ran­
dom walk” over some abstract state space. One starts from an arbitrary state and makes local, 
randomized steps as specified by the chain. As the number of steps tends to infinity (for suitably­
defined chains), this process converges to a some stationary distribution over the state space. The 
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number of steps required to become “close” to the stationary distribution is known as the mixing 
time. By taking enough steps and outputting the final state, one effectively samples from a close 
approximation of the stationary distribution. 

When applying the MCMC method, one must design a Markov chain that has the desired 
stationary distribution, and which converges to this distribution quickly enough to be useful. In 
many cases, researchers only use heuristic measures to estimate the mixing time of a chain, but 
in fact there are many powerful combinatorial techniques which can yield provable, quantitative 
bounds. 

1.3 Prior Work 

The seminal paper of Lawrence et al [LAB+93] introduced MCMC methods to bioinformatics in 
the context of the multiple alignment problem (which can be viewed as a more general form of 
motif­finding). While their techniques are very clever and sophisticated, their use of random walks 
is only heuristic, and they are unable to give any guarantees about the quality of their algorithm’s 
output. This weakness also extends to most uses of the MCMC method in physics and statistics, 
and also to the general technique of simulated annealing. 

Theoretical computer science has recently seen an explosion of results that use MCMC methods 
to efficiently approximate hard­to­compute combinatorial quantities. Using a powerful equivalence 
between counting and sampling, several quantities can be estimated by sampling from a Markov 
chain process, including: the number of perfect matchings in a graph (and more generally, the 
permanent of a matrix) [JS89], the number of solutions to knapsack problems [DFK+93], the 
number of colorings of a graph [Jer95], the volume of a convex body [BDJ96], the number of valid 
configurations in monomer­dimer systems [JS89], and more. 

1.4 Our Approach 

Our purpose is to provide a rigorous analysis of MCMC techniques in the context of the motif­
finding problem. We design algorithms using the MCMC method, and obtain quantitative results 
about their running times and the quality of the solutions they produce. 

The overall structure of our motif­finding algorithm will be as follows: based on the input DNA 
strands, we (implicitly) construct a Markov chain over possible sets of motif locations. We run the 
chain from an arbitrary initial state for a prescribed number of steps, keeping track of the best 
state found within the run. We then re­run the chain a prescribed number of times and output the 
best state seen across all runs. 

The mixing time of the chain tells us the number of steps we should run it. The stationary 
distribution bounds the probability that a single run produces a good solution, because the chance 
that the run ever hits a good solution is at least the probability assigned to good solutions by the 
stationary distribution (minus a negligible approximation quantity). By conducting an appropriate 
number of independent runs, we obtain a good solution with overwhelming probability. Therefore, 
constructing a suitable chain and performing a careful analysis allows us to quantify the exact 
running time of the algorithm and give rigorous statements about the quality of its output. 
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2 The Details 

2.1 Background 

Basic definitions. Let Ω be the state space of a Markov chain. → [0, 1] gives the 
1. It is known that if the chain 

P : Ω2 

transition probabilities, such that for all x ∈ Ω, y∈Ω P (x, y)

is ergodic (i.e., irreducible and aperiodic), it has a unique stationary distribution


= 
π over Ω, which 

is approached as the number of steps tends to infinity (regardless of initial state). Let P t(x, y) be 
the probability that the chain occupies state y when started from a particular state x and run for 
exactly t steps. The variation distance from stationarity is defined as 

Δx(t) = 
1

2 

y∈Ω 

P t(x, y)− π(y) , 

and the rate of convergence to π is measured by the mixing time 

τx(�) = min{t : Δx(t�) ≤ � ∀t� ≥ t}. 

For e = (x, y) ∈ Ω2, define Q(e) = Q(x, y) = π(x)P (x, y). We say that the chain is time­reversible 
if Q(x, y) = Q(y, x) for all x, y ∈ Ω (this is also known as the detailed balance condition). Finally, 
let f : Ω R be some scoring function over the states. → 

Bounding the mixing time. The speed at which a chain approaches its stationary distribution 
is related to the eigenvalues of the matrix of transition probabilities. Specifically, the mixing 
time is related to the second­largest eigenvalue, in absolute value (the largest eigenvalue being 1). 
Analyzing the eigenvalues directly is often too difficult, but a variety of combinatorial techniques 
can be used to bound the eigenvalues or reason about the mixing time directly. Among these 
approaches are coupling and/or path coupling arguments, using canonical paths to bound the edge 
congestion, and analysis of the chain’s conductance. 

In this work, we will use the canonical paths technique to bound the edge congestion and 
thereby the chain’s mixing time. In this approach, we identify the Markov chain with a graph 
G = (Ω, E), where (x, y) ∈ E iff Q(x, y) > 0. In our case, G will be undirected because our 
chain will be time­reversible. For every ordered pair (x, y) ∈ Ω2, we describe a canonical path γxy 

through G from x to y. We will desire a set of canonical paths that does not rely on any single 
edge too heavily; intuitively, the existence of such a set of paths means that the graph is very “well­
connected,” therefore the Markov chain should mix quickly. Formally, we define the congestion to 
be the following quantity: 

1 
π(x)π(y)
ρ γxy ,|= max |

Q(e)e∈E 
γxy �e 

where γxy � e means that γxy uses the directed edge e, and is the length of the path. With |γxy|
this definition, we have the following: 

Proposition 1 ([Sin92]). Let M be a finite, time­reversible, ergodic Markov chain over Ω with 
self­loop probabilities P (x, x) ≥ 1/2 for all x ∈ Ω and stationary distribution π. If the congestion 
of M is ρ, then the mixing time of M satisfies τx(�) ≤ ρ(ln π(x)−1 +ln �−1), for any choice of initial 
state x. 
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2.2 A Useful Chain 

Our overall goal is to define a Markov chain from which we can sample good motifs. We therefore 
desire a chain whose stationary distribution is highly non­uniform, so that states with high scores 
are assigned much greater probability mass. 

Here is one general way of compactly defining such a Markov chain, independent of the particu­
lars of the motif­finding problem. Suppose we start from a connected, undirected graph G = (Ω, E) 
of uniform degree D. We can then define the following (oft­used) Markov chain C(λ), which depends 
on a parameter λ whose role will become clear below: 

From state x, 

1. With probability 1/2, stay at x. Otherwise, 

2. Let y be a uniformly random neighbor of x. Go to y with probability min{1, λf(y)−f(x) .}

Note that the chain always accepts transitions to states y that have better scores than x (ac­
cording to f), and probabilistically rejects transitions to states having worse scores. When λ = 1, 
the chain always accepts transitions without regard to score, while under larger values of λ, the 
probability of rejection tends to 1. Therefore in the limit as λ → ∞, the chain simply becomes a 
“randomized greedy” walk which only accepts transitions that improve the score. This trade­off 
suggests that we must carefully choose an intermediate value of λ, so that high­scoring states are 
favored without the chain becoming stuck in a local optimum. 

We now dispense with some technical details about C(λ). First, observe that it is ergodic: 
P (x, x) ≥ 1/2 for all x, so the chain is aperiodic, and G is connected, so the chain is irreducible. 
Next, define a distribution π over Ω: π(x) = λf(x)/Z(λ), where Z(λ) = u∈Ω λ

f(u) is just a 
normalizing factor. An easy calculation verifies that π is the stationary distribution and that the 
chain is time­reversible. Therefore, for λ > 1, the stationary distribution favors higher­scoring 
states, indicating that C may be useful for solving optimization problems. We now apply it to the 
specific problem of finding good motifs. 

2.3 Applying the Chain to Motif­Finding 

Given this definition of C(λ), we need only define an underlying graph G = (Ω, E) specifically 
related to motifs within our input DNA sequences. We do so as follows: the states are n­tuples 
x = (x1, . . . , xn) specifying the substrings within each of the n DNA sequences. For simplicity, we 
assume that each DNA sequence has length n+k−1, so there are only k possible offsets within each 
DNA sequence, and Ω = [k]n. Two states x, y are neighbors if they differ in at most one index (so 
every x is a neighbor of itself, which simplifies the analysis). We note that every state has exactly 
kn neighbors. The scoring function f(x) can be any function that evaluates the “similarity” of 
the substrings specified by x. We assume that f(x) ∈ [0, 1] for all x ∈ Ω, and that more­similar 
substrings are assigned higher scores. Several popular scoring methods (e.g., information content, 
consensus scoring) can easily be adapted to satisfy these constraints. 

Proposition 2. If λ is polynomial in n and k, the chain C(λ) is rapidly mixing. Specifically, the 
mixing time of C(λ) satisfies τx(�) ≤ 2λ2n2(ln λ + n ln k + ln(1/�)) for any x ∈ Ω. 

Proof. We bound the mixing time of C(λ) using the technique of canonical paths and edge conges­
tion. The canonical paths we choose are simple: the path γxy from any state x to any state y is 
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the path which takes n steps, changing xi to yi on the ith step. (If xi = yi for some i, the ith step 
is just a self­loop.) 

Recall that the mixing time of the chain is related to the maximum edge congestion: 

1 
e Q(e) 

π(x)π(y)|γxy .ρ = max |
γxy �e 

We will give an upper bound on ρ via the following steps: first, we observe that |γxy| = n. Next, 
we will give a lower bound on Q(e) for every e. Next, we will give an upper bound on π(x)π(y). 
Finally, we will count the number of paths γxy � e and give a lower bound on the value Z(λ). 

Here is a lower bound on the value of Q(e) for any e = (u, v) where v =� u: 

Q(u, v) = π(u)P (u, v) 

= 
λf(u) 

Z(λ) 
· min{1, λf(v)−f(u)}

2nk 

= 
λmin{f(u),f(v)} 

2nkZ(λ) 
1 ≥ 

2nkZ(λ) 

(Of course, Q(u, u) ≥ 1/2Z(λ), which is even better.) 
Now we bound π(x)π(y): 

λf(x)+f(y) 

π(x)π(y) = 
Z(λ)2 

λ2 

.≤ 
Z(λ)2 

Next, notice that for any edge e = (u, v) where u and v (possibly) differ only in the ith index, 
the only canonical paths γxy that pass through e are those for which xj = uj for j = i, . . . , n, and 
for which yj = vj for j = 1, . . . , i. Therefore there are only ki−1 �choices for x, and kn−i choices for 
y, for a total of kn−1 paths γxy � e. Also observe that Z(λ) = λf(u) ≥ |Ω = kn . u∈Ω |

We are now ready to combine all these bounds: � λ2 

ρ ≤ max 2n 2kZ(λ) 
Z(λ)2e 

γxy �e 

kn−1 

≤ 2n 2λ2k
Z(λ) 

≤ 2n 2λ2 . 

To apply Proposition 1, we simply observe that π(x) ≥ 1/Z(λ) ≥ 1/λkn, and we are done. 

Proposition 2 guarantees that the chain C(λ) will be rapidly mixing. However, it guarantees 
nothing about the quality of the motifs that are produced by the Markov chain process. We now 
turn our attention to that issue. 
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2.4 Approximate Optimality of the Output 

Recall that the stationary distribution of the chain C(λ) is π(x) = λf(x)/Z(α). We would like to 
argue that in the stationary distribution, the total probability mass over optimal states is some 
non­negligible quantity δ. If this were the case, then running the chain O(1/δ) times and taking 
the best answer among all runs would yield an optimal motif with overwhelming probability. 

Unfortunately, a naive analysis of the stationary distribution cannot yield such a strong result. 
Consider a scoring function f which assigns value 1 to a single state x, and .99 to all others. Then 
the probability mass on the optimal state is about λ.01/kn, which is exponentially small for any λ 
that is polynomial in n (which is required for our rapid­mixing analysis to go through). 

However, we can still achieve meaningful results if we slightly relax our requirements, and 
if we make some (hopefully valid) assumptions about our input and scoring function. Instead of 
requiring an optimal solution, it may be enough to find an approximately optimal one, i.e. one whose 
score is only slightly smaller than that of an optimal solution. Depending on the application, an 
approximation could still be useful: 

•	 It might still identify a common subsequence in most of the DNA strands, narrowing the 
search for a common transcription factor. 

•	 To test the hypothesis that a group of genes contain a common motif, it may be enough 
to find a motif whose score is much larger than what one would expect by chance alone. 
According to most popular scoring functions, if a solution with a very high score exists, then 
several solutions with reasonably large scores also exist. Finding any of these solutions might 
be enough to reject the null hypothesis. 

By including approximately­optimal solutions in our set of “good” motifs, we can significantly 
increase the probability mass that is assigned to good solutions by the stationary distribution. 

A complementary approach would be to assume some random distribution on the parts of the 
DNA strands that lie outside the motif. Under such an assumption, one could potentially prove 
that most states have very low scores, thereby decreasing the relative weight assigned to “bad” 
solutions by the stationary distribution. 

Here we describe some sufficient conditions to establish that the Markov chain produces a good 
solution with good probability. We stress than none of these conditions appear to be necessary; we 
are only providing some general conditions that could potentially be met by a careful analysis of 
the scoring function and the source of input. 

Consider, as a function of score s, the number of states that have score approximately s. If this 
function grows only geometrically as s decreases, then we can prove that the stationary distribution 
assigns enough weight to good solutions. More formally, let N(a, b) = |{x ∈ Ω : f(x) ∈ [a, b)}|. 
Then we have: 

Proposition 3. Suppose there exists a polynomial T (n, k) and constant � > 0 such that 

N(1 − (j + 1)�, 1− j�) 
N(1 − j�, 1− (j − 1)�) 

≤ T (n, k) 

for every integer j > 0 such that N(1−j�, 1−(j−1)�) > 0. Then for λ = T (n, k)1/�, C(λ) is rapidly 
mixing, and the stationary distribution of C(λ) assigns probability mass at least �/(T (n, k) + �) to 
states whose scores are within � of optimal. 
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Proof. First observe that because T is a polynomial and � is constant, λ = T (n, k)1/� is also a 
polynomial. By Proposition 2, C(λ) is rapidly mixing. 

Now let j0 be the integer such that maxx∈Ω f(x) ∈ [1 − j0�, 1− (j0 − 1)�), i.e. j0 identifies the 
interval containing the optimal score. Say that any state whose score lies outside this interval is 
“bad,” while the remainder are “good.” Clearly all good states have score within � of optimal. 

Let M(a, b) be the probability mass assigned by the stationary distribution to states x such 
that f(x) ∈ [a, b). It will be sufficient to prove that for all j > j0, 

M(1 − j�, 1− (j − 1)�) 
M(1 − j0�, 1− (j0 − 1)�) 

≤ T (n, k). 

Because there are only 1/� such j, the total mass assigned to bad states is at most T (n, k)/� times 
the mass assigned to good states. The result immediately follows. 

Let us now prove the desired inequality. Note that 

λ1−(j−1)� 

M(1 − j�, 1− (j − 1)�) ≤ 
Z(λ) 

· N(1 − j�, 1− (j − 1)�). (1) 

Now, by assumption on N and by taking a telescoping product, we know that 

N(1 − j�, 1− (j − 1)�) ≤ T (n, k)(j−j0) N(1 − j0�, 1− (j0 − 1)�).· 

But by our choice of λ, T (n, k)(j−j0) = λ�(j−j0). Replacing terms in (1), we get 

λ1−j0� 

M(1 − j�, 1− (j − 1)�) ≤ λ� · 
Z(λ) 

· N(1 − j0�, 1− (j0 − 1)�) 

T (n, k)M(1 − j0�, 1− (j0 − 1)�),≤ 

as desired. 

Further Work 

We note that at this time we are unable to prove that any efficient algorithm unconditionally gives 
a good approximation of an optimal motif (though we are able to give reasonable conditions which 
guarantee positive results). We see a few technical hurdles standing in the way of this goal: first, 
the canonical paths technique tends to give loose bounds on the mixing time. In addition, we 
point out that the approach seems inherently limited in our particular chain: consider two high­
scoring but completely different motifs represented by states x and y. Any path from x to y will go 
through an intermediate edge e = (u, v) whose endpoints represent bad motifs by any reasonable 
scoring function. Therefore, e’s congestion will be “charged” an amount of π(x)π(y)/Q(e), which 
is a relatively large quantity. It is possible that other analytical techniques such as coupling, or 
analyzing the conductance, could circumvent these problems. 

We also would like to prove that the stationary distribution assigns large weight to good so­
lutions. This requires knowing something about the structure of the scores. Our Proposition 3 
supposes one useful structure, though there are undoubtedly others. In particular, it would be 
helpful to study a particular scoring function and argue that it does not penalize “near­misses” of 
an optimal motif by too much. Using such a result, one could argue that there are many solutions 
with scores almost as good as optimal, and hence that large mass is assigned to them. 

7 



References 

[BDJ96]	 R. Bubley, M. Dyer, and M. Jerrum. A new approach to polynomial­time random walks 
for volume computation. Manuscript, 1996. 

[DFK+93] M. Dyer, A. Frieze, R. Kannan, A. Kapoor, L. Perkovic, and U. Vazirani. A mildly expo­
nential time algorithm for approximating the number of solutions to a multidimensional 
knapsack problem. Combinatorics, Probability and Computing, 2:271–284, 1993. 

[Jer95] M. Jerrum. A very simple algorithm for estimating the number of k­colourings of a 
low­degree graph. Random Structures and Algorithms, 7:157–165, 1995. 

[JS89] M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal on Comput­
ing, 18:1149–1178, 1989. 

[JS96] Mark Jerrum and Alistair Sinclair. Approximation algorithms for NP­hard problems, 
chapter 12, pages 482–520. PWS Publishing Co., 1996. 

[LAB+93] Charles E. Lawrence, Stephen F. Altschul, Mark S. Boguski, Jun S. Liu, Andrew F. 
Neuwald, and John C. Wootton. Detecting subtle sequence signals: A Gibbs sampling 
strategy for multiple alignment. Science, 262:208–214, October 1993. 

[Sin92]	 A. Sinclair. Improved bounds for mixing rates of markov chains and multicommodity 
flow. Combinatorics, Probability and Computing, 1:351–370, 1992. 

8 


