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Probabilistic Methods: Random Projections 

Introduction. 

Assume we have n sequences of bases (symbols) of length t. 

Definition 1 An (�, d)-motif is a substring of length � occurring with no more then 
d mismatches in each of the n strings. 

The planted (�, d)-motif problem is as follows: 

• Input: n sequences of length t with at least one (�, d)-motif. 

• Output: (�, d)-motif. 

The planted (�, d)-motif problem was introduced by Pavel Pevzner in some compu
tational biology talk in 2001. Random Projections is a randomized approach to a 
motif finding problem. It is guaranteed to find a right answer with high probability, 
but it is very particular to the motif finding problem. 

If we want to find an �-long pattern implanted in DNA sequences without any muta
tions, then the motif finding problem is reduced to a simple count of the number of 
exact occurrences of the �-mers and finding the most frequent ones. If, however, the 
pattern is implanted with mutations, the problem is much more complicated. 

Assume that we are given that a random �-mer with up to d changes is present in a 
sequence, but we do not know if the motif is present. What if there are many of such 
substrings, and they do not constitute a motif? 

The intuition behind why the random approach should return a right answer with 
high probability is following: considering the size of the input, the motifs are selected 
only if they are actually implanted in there. 
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Indeed, consider an example of a planted (15, 4)-motif problem on 20 words of 600 
letters. We give a probability argument that a (15, 4)-motif will not occur, unless 
inserted. 

We start with a general setup. Consider n sequences of length t. At each position 
one of 4 letters can be present. Each character can be viewed as an independent 
Bernoulli trial with probability of success 1/4 (the character matches the one at the 
certain position in the �-mer), and correspondingly probability of failure 3/4. 

We hit the motif if in the given �-mer at most d letters mismatch. Then we can 
roughly calculate probability of a hit Phit: 

d � � � �(�−i) � �i
1 3 

Phit = . 
i 4 4 

i=0 

This is a fake probability since it does not take into account overlaps of �-mers. 
However, it gives an idea of what is the probability that given pattern S occurs with 
at most d mismatches at a given position of a random sequence. 

Since in each sequence of length t there are at most (t − � + 1) possible �-mers, the 
probability that at least on of them will have up to d mismatches with the pattern P 
is 

P1 = 1 − (1 − Phit)
(t−l+1). 

P

Then the probability that mutated pattern P is present in all n sequences is 

n = P1 
n . 

Thus the expected number of (�, d) motifs is 

E(�, d) � 4�(1 − (1 − Phit)
t−l+1)n . 

Plugging in 9 for � and 2 for d, we see that E(9, 2) � 1.6. Hence (9, 2)-motif occurs 
fairly often. Similarly, E(15, 5) � 2.8 and E(13, 4) � 5.2. 

We call (�, d)-motifs twilight zone motifs if they lie at the boundary of motifs which 
we do not expect to find unless inserted. Our probability analysis shows that a 
(15, 4)-motif is in twilight zone. 

Approaches to motif finding problem 

If we wanted to solve motif finding problem by brute force, we would need to sort 
through all 4� possible motifs. Clearly, this approach is impractical and too compu
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tationally intensive. The several approaches developed in the past are: 

Inductive. Counting over-represented k-mer for k < �. This approach reduces a 
problem to motifs of smaller size. 

Gibbs sampling. Gibbs sampling is described in [1][p. 412]. 

WINNOWER. Constructs a graph whose vertices correspond to the �-mers present 
in the input sequences, with an edge connecting two vertices if and only if the 
corresponding �-mers differ in at most 2d positions and do not both come from 
the same input sequence. WINNOWER then looks for a clique of size t in this 
graph. 

Random projections algorithm 

Later a better idea was introduced: random projections. Suppose we have a planted 
(�, d)-motif problem on t sequences of n letters. We randomly select k positions out 
of � positions. This selection is called (�, k) gapped pattern. 

For each �-mer in the data we look at its k-subset which is defined by the gapped 
pattern. This subset is called projection. We use the obtained k-subset as a hash 
value for the �-mer. 

Figure 20.1: Hashing �-mers. 

Given a gapped pattern, count all k-length hashes of all �-mers. We cannot avoid 
collisions, since many �-mers can produce same hash. We group �-mers that hash 
to the same k-mer in a set called bucket. Random sequences should have the same 
bucket size for any hashed pattern. Hopefully, some buckets will be significantly 
over-represented, which will mean that they represent motifs. 

Lets see what parameter k should we consider. First of all, for a hash to have a 
practical meaning, we need k � �− d. Otherwise, we risk including mutated bases in 
our hash function. 
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Figure 20.2: Buckets. 

On the other hand, we want to exclude random sequences. For this we bound k from 
below. Given a random sequence, calculate expected number of counts in its bucket: 

n · t 
E[counts] = . 

4k


Hence if k > log4 n · t, then E[counts] < 1 for a random sequence.


Let P be a pattern which represents an (�, d)-motif. We define a planted bucket to

be a bucket to which P hashes.


The probability that instance of P in a single sequence hashes to h(P ) is


l−d 

P rob[P � h(P )] = �

k
l 
 = Phit. 
k 

For k = 7 and for (�, d) = (15, 4), Phit � 0.06 and we have 20 chances to hit it. 

The expected number of buckets hit by random sequences is 

n · t 
E[|h(P )|] = + n · Phit,

4k 

where n · Phit is a probability that expected sequence has got matched with a bucket. 
This formula tells us that we will see an over-representation in some bucket. 

For (�, d) = (15, 4) and k = 7, E[|h(P )|] = 0.73 + 1.02 = 1.75. 

We define a threshold S on bucket counts. Buckets with size above S will be suspects 
for a planted bucket. 
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The probability that the size of planted bucket will fail to exceed the threshold is: 

s−1 � � 
� n 

P rob[|h(P )| < S] = (Phit)
i(1 − Phit)

(n−i) = Pf ail. 
i 

i=0 

Above value can be as large as 0.1, which clearly does not help to find the planted 
bucket. 

The solution is to repeat the projection m times. The probability of failing to flag 
the planted bucket h(P ) after m trials is P m 

f ail . 

If we agree to not be able to find motif 1% of time, take 

log(0.01) 
m ≈ . 

log(Pf ail) 

Then 99% of time, the planted bucket gets over the threshold S at least once in m 
trials. 

Having identified the planted bucket we need to figure out what is the motif. The 
algorithm for doing this is roughly as follows: 

1. Recover the locations which hash to the planted bucket. 

2. Construct a profile from these substrings. 

3. Use an iteration motif finder from this profile. 

4. If the consensus is an (�, d)-motif, then report. 

Conclusion 

Random projections algorithm works better than other mentioned algorithms because 
previous work was largely based on k-mer counts. In other algorithms, every frequent 
k-mer is used either in some weird graph problem or every �-mer in the sequence is 
used as an iterative start point as done in WINNOWER, for example. But consecutive 
patterns just do not get into the twilight zone. 

However, situation with real data is a bit different. In real data we have non-uniform 
letter frequencies, non-independence and mismatch positions much more correlated, 
since ”random data” has non-random profile. 
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On real data we do not have uniformity and there is no guarantee that motif indeed oc
curs in every sequence. Nevertheless the random projection algorithm demonstrated 
to reproduce some known motif results. 
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