
18.417 Introduction to Computational Molecular Biology 

Lecture 18: November 9, 2004 Scribe: Chris Peikert 
Lecturer: Ross Lippert Editor: Chris Peikert 

Applications of Hidden Markov Models 

Review of Notation 

Recall our notation for Hidden Markov Models: T (i, j) = Pr[i � j], the probability of 
transitioning from state i to state j. E(i, x) = Pr[x emitted at state i]. The starting 
distribution over states is �. Dx = diag(E(:, x)), that is, Dx is a square matrix with 
E(i, x) as entry (i, i), and zeros elsewhere. 

Using this notation, the probability of a certain sequence of symbols x1, . . . , xn being 
output from the chain is: 

Pr[x1, . . . , xn] = �Dx1 T · · · TDxn 1. 

This can be split into two important auxiliary quantities that frequently appear: 

•	 f(k, i) = Pr[x1, . . . , xk , sk = i), the probability that symbols x1, . . . , xk are 
output and the Markov chain is at state i at time k. As a vector over all states, 
f(k, :) = �D T · · · TDxk .x1 

•	 b(k, i) = Pr[xk+1, . . . , xn, sk = i], the probability that symbols xk+1, . . . , xn are 
output when the Markov chain is at state i at time k. As a vector over all 
states, b(k, :) = TD · · · TDxn 1.xk+1 

Thus we get that 
Pr[x1, . . . , xn] = 


 
f(k, i)b(k, i). 

i�states 

Using these quantities, we can compute the probability that, given a sequence 
x1, . . . , xn of output symbols, the Markov chain was in some state i at time k: 

f(k, i)b(k, i)
Pr[sk = i] = �

j f(k, j)b(k, j) 
. 

18-1




18-2 Lecture 18: November 9, 2004 

However, this isn’t very useful because it doesn’t capture dependencies between states 
and output symbols at different times. 

Tropical Notation 

A semi-ring is a tuple (S, id+, id×, +,×), where S is a set of elements, id+ and id× are 
the additive and multiplicative identities (respectively), and + and × are the addition 
and muliplication operations. The operations are closed, commutative, associative, 
and × distributes over +. There are many examples of semi-rings: 

Example 1 (R+ �{0}, 0, 1, +,×), the non-negative reals under standard addition and 
multiplication, is a semi-ring. 

Example 2 (R � {∪},∪, 0, minT , +) (the “Boltzmann” semi-ring), where 

min(a, b) = T log(exp(−a/T ) + exp(−b/T )), 
T 

is a semi-ring useful in statistical mechanics. Note that as T � 0+ , minT “ap­
proaches” min, in the sense that it becomes a closer and closer approximation of 
the min operation. The semi-ring at this “limit” is known as one of the tropical 
semi-rings. 

Example 3 Likewise, (R � {−∪},−∪, 0, max, +), which arises by taking the Boltz­
mann semi-ring as T � ∪, is the other tropical semi-ring. 

Let’s interpret our HMM quantities in the tropical semi-ring from Example 3. To 
do so, we simply take logarithms of the real quantities, replace 

� 
by max, and 

multiplication by +. 

Recall that 

Pr[x1, . . . , xn] = 

 

�iE(i1, x1)T (i1, i2) · · · = 

 

f(k, i)b(k, i). 
i1,...,in �ı 

We “tropicalize” this expression, viewing it in the appropriate semi-ring: 

max(log �i + log E(i1, x1) + log T (i1, i2) + · · ·) = max(f̃(k, i) + b̃(k, i)) 
�ı �ı 



18-3 Lecture 18: November 9, 2004 

where f̃ and b̃ are defined similarly to f and b, but in the semi-ring. From this, we 
get a more compact and easier to evaluate expression for the most likely state at time 
k: 

statek = arg max(f̃(k, i) + b̃(k, i)). 
i 

It is possible to derive other interesting results via tropicalization: 

•	 The Viterbi algorithm can be viewed as a tropicalization of the likelihood cal­
culation; 

•	 Approximations can be made about random gapped alignment scores; 

•	 Tropical “determinants” of distance matrices provide useful information about 
trees. 

Training an HMM 

We want to compute the HMM that was mostly likely to produce a given sequence 
of symbols. 

•	 Input: the sequence (or, more generally, set of sequences) x1, . . . , xn and the 
number of states in the HMM. 

•	 Output: the HMM which maximizes Pr[x1, . . . , xn]. 

In general, this is a nonlinear optimization problem with constraints: T � 0, E � 
0, T · 1 = 1, E · 1 = 1. The objective being optimized, Pr[x1, . . . , xn], can actually be 
written as a polynomial in T and E. Unfortunately, the general problem of polynomial 
optimization is NP -hard. 

Expectation Maximization 

Expectation Maximization (EM) is a very common tool (often used in machine learn­
ing) to solve these kinds of optimization problems. It is an iterative method which 
walks through the solution space and is guaranteed to increase the likelihood at ev­
ery step. It follows from general techniques for doing gradient search on constrained 
polynomials, and always converges to some local (but possibly not global) optimum. 



18-4 Lecture 18: November 9, 2004 

In EM, we start with some initial E and T and iterate, computing more likely values 
with each iteration. Given the values of E and T at one iteration, the values in the 

ˆnext iteration (called E and T̂ ) are given by the equations: 

Ê(i, x) → 

 

f(k, i)b(k, i) 
k : xk =x 


T̂ (i, j) → f(k, i)T (i, j)E(j, xk )b(k + 1, j) 
k 

(where f and b are calculated using E and T ). 

HMMs Applied to Global Alignment 

Figure 18.1: An HMM to support alignment 

Consider the problem of global alignment with affine gap penalties. We can view this 
problem in terms of finding an HMM that produces the observed sequences with good 
likelihood. We limit the HMM to a specific structure (see figure 18.1), which consists 
of several layers, each containing one of the following three kinds of states: 

•	 Match state: this emits one base (usually with high bias), and links to the 
insertion state at the same layer and the deletion state at the next layer; 

•	 Insertion state: this emits a random base and links back to itself, as well as to 
the deletion and matching states of the next layer; 

•	 Deletion state: this emits nothing, and links to the deletion and match states 
of the next layer. 



Lecture 18: November 9, 2004 18-5 

A path through the HMM corresponds to an alignment in the following way: passing 
through a match state corresponds to matching bases between the two sequences; 
cycling through an insertion state corresponds to some number of inserted bases (i.e., 
gaps in one sequence); passing through deletion states corresponds to some number 
of deleted bases (i.e., gaps in the other sequence). 

Extensions of Alignment via HMMs 

Using HMMs we can do alignment to profiles (related sequences serving as training 
data). Multisequence alignment is useful in many ways: 

•	 The Viterbi algorithm produces good multialignments (recall that the previous 
best algorithm for this problem took time and space exponential in the number 
of sequences). 

•	 Transition probabilities give position dependent alignment penalties, which can 
be much more accurate than in the case of generic affine gap penalties. 

•	 Probabilities within the HMM highlight regions of both high and low conserva­
tion of bases across different sequences. 

•	 Pairs of HMMs can provide means for performing clustering: after training two 
HMMs on different profiles, a new sequence can be clustered by choosing the 
HMM from which it would be produced with the higher likelihood. 


