
18.417 Introduction to Computational Molecular Biology


Lecture 4: September 21, 2004 Scribe: Russ Cox

Lecturer: Ross Lippert Editor: Michael Walfish


Dynamic Programming 

Introduction 

The vast majority of compute cycles in biology go to string matching problems such as 
DNA sequence alignment, so it is important to be able to solve these problems efficiently. 
One important technique for doing so is dynamic programming. 

Dynamic Programming: Change is a Classic DP Example . . . 

Consider the problem of finding the minimum number of coins required to represent a 
particular sum of money. For example, using the American system of coins representing 1, 
5, 10, and 25 cents, the smallest way to represent 40 cents is one 25-cent coin, one 10-cent 
coin, and one 5-cent coin. 

. . . but not for American denominations (greedy approach works) 

It turns out that for the American coin set, a greedy approach to making change yields 
correct solutions. Specifically, if you need to make n cents, use as many of the 25-cent coins 
as you can, then 10-cent coins, then 5-cent coins, and finally 1-cent coins. 

However . . . 

If we add a new coin to the set — say, the George Bush 20-cent piece, this greedy approach 
fails. For example, to make 40 cents, the greedy approach would still use one 25-cent coin, 
one 10-cent coin, and one 5-cent coin (as it did above), a total of three coins. But we can do 
better by using just two 20-cent coins. So the greedy approach cannot be used in general. 

4-1




4-2 Lecture 4: September 21, 2004 

Recurrence 

If we think about the problem for a while, we find that the answer can be stated in terms 
of answers to other instances of the problem. That is, we can write a recurrence. If 
minN umCoins(m) denotes the minimum number of coins required to make m cents using 
the set of coin denominations {c1, c2, ..., cd }, then: 

minN umCoins(0) = 0 

and 

In words, in order to make m cents, we have to use some coin first. After having made that 
choice, you want to make the rest of the change in a minimal way. 

We could use this recurrence to write a recursive algorithm for computing 
minN umCoins(·): 

This recursive algorithm implements a brute force exhaustive search of all ways to make m 
cents out of the given coins. It ends up taking approximately O(md) time, which is pretty 
long. 

If we look at the search tree, we find that some subproblems (for example, 
minN umCoins(70) in the piece of search tree shown in Figure 4.1) are computed many 



4-3 Lecture 4: September 21, 2004 

times. To avoid this duplication of work, we can make a table of previously-computed 
results and then consult the table before invoking the actual computation. 

Finally, we can remove the recursion completely, instead iterating through the table filling 
it out until we have filled in the answer for the problem we are interested in solving. 

Figure 4.1: Naive search tree for making change. Subproblems are recomputed many times, 
which is inefficient. 

There are m entries in the table and d entries that must be consulted to fill in a new entry, 
so the work required has been reduced from O(md) to O(md). 

Dynamic Programming: Formalization 

In its essence, dynamic programming is the technique of 

(a) stating a computation as a recurrence and then 
(b) building up a table of “previous” results to be used in computing future results. 

We can formalize this “essence” by saying that the three parts of a dynamic programming 
solution are: 

1.	 a space of problem ‘states’ A 
2.	 a recurrence defining the solution si to state i in terms of the solution to other problem 

states sj : si = f({sj }) 
3.	 a partial ordering < on A such that i < j if and only if the solution si is required to 

compute sj . 



4-4 Lecture 4: September 21, 2004 

Alignments 

The problem of sequence alignment is to take two input sequences 

s1 = a1, a2, . . . , am 

s2 = b1, b2, . . . , bn 

and find a way to insert gaps into them to produce new sequences
 s
 � 
2 

�, s
1

such that the

Hamming distance (or more generally, some elementwise scoring function) between the two 
new sequences is optimized. 

The alignment score is 
�

i �(a
�).i 

�, bi 

Figure 4.2: Example alignment. 

An example alignment is depicted in Figure 4.2. 

In computer science, the goal of this problem is to minimize the “edit distance,” typically 
defined as a constant µ times the number of mismatches plus a constant � times the number 
of inserted gaps. The dynamic programming solution was first published by Levenstein in 
1966. 

In biology, the goal is to maximize the “similarity,” typically defined as the number of 
matches minus the computer science “edit distance”. The dynamic programming solution 
was first published by Needleman and Wunsch in 1970. 

The two scoring functions are essentially equivalent and do not change the algorithm beyond 
whether we are trying to minimize or maximize the score. 



4-5 Lecture 4: September 21, 2004 

A DP Solution 

As is the case for many problems that can be solved with dynamic programming, deter
mining the problem state space and the recurrence can be hard. It may take a few tries 
to come up with a recurrence that is both correct and amenable to dynamic programming. 
Think hard. 

In an instance of the alignment problem, let us say that the input sequences 

s1 = a1, a2, . . . , am 

s2 = b1, b2, . . . , bn 

have gaps inserted to produce 

� 
1 

� 
t 

� , . . . , a 
2

� , a 
1

s = a 
� 
2 

� 
t 

�, . . . , b
2

�, b
1

= bs 

and that the resulting score is given by 

t 
 

i=1 

�) = 
2

� , s 
1

�(a
 �)
1

�, b
1

score(s


Note that the score can be decomposed into the score for the last symbol pair in the 
alignment and then the score for the rest of the strings: 

score(s
 �)t 
�, bt 

�) + �(at 
�/b
2

� , s t 
�/a
1

�) = (score s
2

� , s 
1

(Here, the notation s/a denotes a string s with the final symbol a removed.)


Assuming that it never makes sense to align two inserted gaps, there are three possibilities

for the pair (a
 �): they are (a

1

�, b
1 m, bn), (am,−), and (−, bn), where − denotes a gap. Thus 

we can turn our recurrence for the score of the gap-inserted strings into a recurrence for the 
minimum score of the original strings: 



4-6 Lecture 4: September 21, 2004


minscore(s1, s2) = min{	 minscore(s1/am, s2/bn) + �(am , bn) 

minscore(s1/am, s2) + �(am , −) 

minscore(s1, s2/bn) + �(−, bn)} 

The space of problem states in this recurrence is simply prefixes of s1 and s2. We will 
denote the i-symbol prefix of s1 and the j-symbol prefix of s2 as (i, j). 

Finally, in order to compute the solution to (i, j), it is clear that the recurrence above 
requires the solutions to (i − 1, j − 1), (i − 1, j), and (i, j − 1). Taking the transitive closure 
of this relationship, the partial order is given by: 

(i�, j� ) < (i, j) iff i� � i � j� � j � (i� < i � j� < j) 

If we consider the state place as a plane, then computing the solution for a point x requires 
solutions to all points in or on the rectangle with corners at x and the origin, except x itself. 
In the picture, computing the solution to x requires the solution to all points in the shaded 
area. 

x 

Viewing the state space as an m x n rectangle, we can compute solutions in a variety of 
orders, including by rows, by columns, and by diagonals: 



4-7 Lecture 4: September 21, 2004


x 

x 

All these orders are equally correct for solving the problem, but only the diagonal ordering 
is parallelizable: the solution to an entire diagonal can be split arbitrarily among a set of 
processors once the previous diagonal is solved. 



4-8 Lecture 4: September 21, 2004


x 

Biological Applications 

This solution to the global sequence alignment problem can be used in many biological 
settings, tuned by varying the scoring function �. 

In one common setting, the � function is an energetic scoring function, which tries to model 
how likely it is that one sequence will bind to another. For example, the score �(A, T ) will 
depend on the binding energy between adenosine and thymine. 

In another common setting, the � function is based on evolutionary substitution matrices, 
which tries to model how likely it is that one symbol evolved into another over time. For 
example, the score �(A, T ) will depend on the probability that A changes into T as a 
sequence is copied over and over for some period of time. 

In this latter setting, the symbols may be nucleotides but may also be amino acids. De
termining a scoring function for amino acids is harder than determining a scoring function 
for nucleotides. For example, it turns out that hydrophilic amino acids are more likely to 
change into other hydrophilic amino acids than they are to change into hydrophobic amino 
acids, and vice-versa. 

To determine a scoring function for amino acids, biologists typically consider two sequences 
known to be evolutionarily similar (for example, human and mouse hemoglobin). Such 
sequences have the same alignment for many reasonable choices of scoring function: typically 
each mismatch is sandwiched between long runs of perfect matching. Counts of these forced 
matches can be used to compute the probability that, say, arginine evolves into lysine. 



Lecture 4: September 21, 2004 4-9 

The earliest reasonably justified substitution scoring matrix for amino acids is known as the 
PAM1 matrix. Exponentiating the PAM1 matrix approximates the scores for longer time 
periods than the PAM data covers. 

Alternate Applications 

Other more restricted problems can be framed as alignment problems too. 

One such problem is the “Longest Common Subsequence” problem. which allows matches 
and gaps but no mismatches. This can be handled with an alignment solver by scoring an 
infinite penalty for a mismatch. A formal statement of the problem is: 

Another problem is computing sparse alignments. In the sparse alignment problem, the 
input is two sequences and a list of “islands of similarity” between those two sequences. 
These “islands” are represented by triples (x, y, s), which means that a potential match 
exists between the two sequences (at positions x in the first sequence and y in the second) 
and that the match has score s. (The “islands” are very few base pairs each, which is 
why we represent them as points, e.g., x, and not as a (begin,end) pair.) The output is a 
sequence of pairs that monotonically increases in x and y and maximizes the sum of the 
corresponding scores minus a gap penalty. Biologically, this output represents a possible 
alignment of two sequences in which common points may be in very different places along 
the actual DNA strand. 

The sparse alignment problem can be solved with a dynamic programming approach similar 
to the one used for the alignment problem. The number of subproblems is equal to the num
ber of triples in the input, but computing the answer to each subproblem here potentially 
requires looking at all possible predecessor triples rather than just a constant number of 
previous results, as in the standard alignment problem. 


