
18.417 Introduction to Computational Molecular Biology 

Problem Set 3 Issued: October 5, 2004 
Lecturer: Ross Lippert Due: October 19, 2004 

This is a short section, so the problem set will be likewise short. 

1. 8.6 of JP. 

2. 8.9 of JP. 

3. 8.12 of JP. Note, the equation should read 1 − e−c in this problem. 

4. (*) Given a set of fragments, F , the shortest superstring can be found 
by solving a TSP problem on the overlap graph. Recall that the over
lap graph has F as its nodes and an edge from v to w (v, w � F ) if 
overlap(v, w) � T for some threshold T . 

Real assemblers do not attempt to find a best Hamiltonian path through 
this graph but are satisfied with obtaining a set of non-intersecting con

fident paths for some notion of confidence (usually having to do with 
the quality of overlaps along the edges of the path). These good paths 
are called contigs. Each path, v1v2 · · · vn corresponds to a superstring 
obtained by merging/concatenating the vi. That string is treated as an 
indivisible unit during subsequent phases of assembly. 

If we have a hypothetical genome S and a set of fragments F , a contig
ging algorithm is called consistent for (S, F ) when the contigs produced 
are all substrings of S. Consistency tells us that it is not impossible to 
reconstruct S from F . 

The greedy contigging algorithm proceeds by making each node a triv
ial contig and then joining pairs of contigs v1v2 · · · vn and w1w2 · · · wm 

together (making a new contig v1 · · · vnw1 · · · wm) when (vn, w1) is an 
edge and overlap(vn, w1) = maxx,y overlap(x, y) where x ranges over 
contig ends and y ranges over contig starts. 

This can produce inconsistencies on simple repeats. For example take 

1 



2	 Problem Set 3: 18.417 

T	 = 2 and 

f

f

f

f

f1 t a c a t 
2 c a t g g c 
3 g c t t g 
4 t t g a c 
5 a c a t c 

S t a c a t g g c t t g a c a t c 

and greedy contigging produces f1f5 � tacatc and f2f3f4 � catggcttgac. 
We see that even though the S can be assembled from a contig of the 
overlap graph the contigs which are produced are inconsistent with S, 
meaning S cannot result from any subsequent assembly steps. 

The Celera assembler used a more conservative algorithm. Given a con
tig v1 · · · vn a best-suffix is the contig w1 · · · wm such that overlap(vn, w1) = 
maxx overlap(vn, x) and a best-prefix is the contig such that overlap(wm, v1) = 
maxy overlap(y, v1), where x ranges over contig ends and y ranges over 
contig starts. We merge contigs A and B into the contig AB if and 
only if A is the only contig who has B for a best-suffix and B is the 
only contig having A as a best-prefix. This was called the thickest edge 
rule, though that is probably a misleading name. 

For the example above, this is consistent: we do not merge F1 and F5 

because F1 is a best prefix of both F2 and F5. However, this algorithm is 
not consistent for every (S, F ). Produce an example where the thickest 
edge rule will give inconsistent contigs, but where there exists a contig 
f1f2 · · · fk in the overlap graph whose superstring is S. 1 

5. 8.20 of JP.	 To clarify this problem: given a peptide, you have a set

of theoretical masses which come from al the N-terminal prefixes and

the C-terminal suffixes. If a mass modification happens at amino acid

i, all prefixes after i and suffixes before i are modified likewise. Thus

the problem is one of “Allowing k arbitrary mass modifications to the

amino acids of the input peptide, find the highest shared peak count

between the mass spectrum of the modified peptide and some arbitrary

input mass spectrum (about which you know nothing).


1It is very possible that I have mis-written some part of this problem. If clarifications 
need to be made, I’d rather not make them the night before the problem set is due. 



3 Problem Set 3: 18.417 

6. (*) 8.26 of JP. “Efficient” here means O(nd) for a smallish d. Don’t 
reduce it to a “find a Hamiltonian path problem” and think that will 
do. 

7. This is a simplification of the problem of identifying a substring of a 
large database like SwissProt or NRAA (tens of millions of amino acids 
long) that matches the mass of some peptide (5-30 amino acids long). 
n can be 108 , N will be in the hundreds or thousands, while the mi’s 
are from 500 to 50k (that is beyond the upper limit of reliable mass 
measurement on a mass spec instrument). 

Devise an O(n) algorithm which will locate all substrings of mass m 
in a string S (of length n) of amino acid sequences given a table of 
amino acid weights (positive integers). Extend this algorithm to allow 
the location of N masses {m1, m2, . . . , mN } in S in time faster than 
O(Nn + X), where X is the number of actual matches (that is, it 
should perform better than O(Nn) when X is small but no worse that 
O(X) when X is large). 


