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1 Overview 

The class’s goals, requirements, and policies were introduced, and topics in the class were described. Every
thing in the overview should be in the course syllabus, so please consult that for a complete description. 

2 Linear Algebra Review 

This course requires linear algebra, so here is a quick review of the facts we will use frequently. 

Definition 1 Let M by an n × n matrix. Suppose that 

Mx = λx 

for x ∈ Rn , x = 0, and λ ∈ R. Then we call x an eigenvector and λ an eigenvalue of M . 

Proposition 2 If M is a symmetric n × n matrix, then 

•	 If v and w are eigenvectors of M with different eigenvalues, then v and w are orthogonal (v · w = 0). 

•	 If v and w are eigenvectors of M with the same eigenvalue, then so is q = av + bw, so eigenvectors 
with the same eigenvalue need not be orthogonal. 

•	 M has a full orthonormal basis of eigenvectors v1, . . . , vn. All eigenvalues and eigenvectors are real. 

• M is diagonalizable: 
  M = V ΛV T

where V is orthogonal (V V T = In	), with columns equal to v1,�. . . , vn, and Λ is diagonal, with the 
corresponding eigenvalues of M as its diagonal entries. So M = n

i=1 λiviv
T 
i . 

In Proposition 2, it was important that M was symmetric. No results stated there are necessarily true 
in the case that M is not symmetric. 

Definition 3 We call the span of the eigenvectors with the same eigenvalue an eigenspace. 

3 Matrices for Graphs 

During this course we will study the following matrices that are naturally associated with a graph: 

• The Adjacency Matrix 

•     

• The Laplacian Matrix 

• The Normalized Laplacian Matrix 
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Let G = (V, E) be a graph, where |V | = n and |E| = m. We will for this lecture assume that G is 
unweighted, undirected, and has no multiple edges or self loops. 

Definition 4 For a graph G, the adjacency matrix A = AG is the n × n matrix given by 

1 if (i, j) ∈ E 
Ai,j = 0 otherwise 

For an unweighted graph G, AG is clearly symmetric. 

Definition 5 Given an unweighted graph G, the Laplacian matrix L = LG is the n × n matrix given by 

Li,j = 

⎧⎨ ⎩ 

−1 if (i, j) ∈ E 
di if i = j 
0 otherwise 

where di is the degree of the ith vertex. 

For unweighted G, the Laplacian matrix is clearly symmetric. An equivalent definition for the Laplacian 
matrix is 

LG = DG − AG, 

where DG is the diagonal matrix with ith diagonal entry equal to the degree of vi, and AG is the adjacency 
matrix. 

Example Laplacians 

Consider the graph H with adjacency matrix ⎞⎛ 

AH = 

⎜⎜⎜⎜⎝ 

0 1 0 1 0 
1 0 1 0 0 
0 1 0 1 1 
1 0 1 0 0 
0 0 1 0 0 

⎟⎟⎟⎟⎠ 

This graph has Laplacian ⎞⎛ 
2 −1 0 −1 0 
−1 2 −1 0 0 
0 −1 3 −1 −1 

0 2 0 

⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎠ 
LH = 

−1 
0 

−1 
−10 0 1 

Now consider the graph G with adjacency matrix ⎞⎛ 
0 1 0 
1 0 1⎝ ⎠AG = 
0 1 0 

This graph has Laplacian ⎞⎛ 
1 −1 0 
−1 2 −1 
0 1 

⎝ ⎠LG = 
−1 

LG is a matrix, and thus a linear transformation. We would like to understand how LG acts on a vector 
v. To do this, it will help to think of a vector v ∈ R3 as a map X : V → R. We can thus write v as 
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⎛ ⎞ 
X(1) 

v = ⎝	 X(2) ⎠ 

X(3) 

The action of LG on v is then ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛	 ⎞ 
1 0 X(1) X(1) − X(2) � X(1) − X(2) � ⎝ 

−1 ⎠ ⎝ ⎠ = ⎝ ⎠ = ⎜ 
X(2) − [ X(1)+X(3) ⎟LGv = −1 2 −1 X(2) 2X(2) − X(1) − X(3) ⎝ 2 2 ] ⎠ 

0 −1 1 X(3) X(3) − X(2) X(3) − X(2) 

For a general Laplacian, we will have 

[LGv]i = [di ∗ (X(i) − average of X on neighbors of i)] 

Remark For any G, 1 = (1, . . . , 1) is an eigenvector of LG with eigenvalue 0, since for this vector X(i) 
always equals the average of its neighbors’ values. 

Proposition 6 We will see later the following results about the eigenvalues λi and corresponding eigenvec
tors vi of LG: 

•	 Order the eigenvalues so λ1 ≤ . . . ≤ λn, with corresponding eigenvectors v1, . . . , vn. Then v1 = 1 and 
λ1 = 0. So for all i λi ≥ 0. 

•	 One can get much information about the graph G from just the first few nontrivial eigenvectors. 

Matlab Demonstration 

As remarked before, vectors v ∈ Rn may be construed as maps Xv : V → R. Thus each eigenvector assigns a 
real number to each vertex in G. A point in the plane is a pair of real numbers, so we can embed a connected 
graph into the plane using (Xv2 , Xv3 ) : V R2 . The following examples generated in Matlab show that →
this embedding provides representations of some planar graphs. 

Figure 1: Plots of the first two nontrivial eigenvectors for a ring graph and a grid graph 
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Image courtesy of Dan Spielman. Used with Permission.



Figure 2: Handmade graph embedding (left) and plot of the first two nontrivial eigenvectors (right) for an 
interesting graph due to Spielman 

Figure 3: Handmade graph embedding (left) and plot of first two nontrivial eigenvectors (right) for a graph 
used to model an airfoil 
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