## Lecture 9

## 1 Well shaped mesh

Split a partition space into simplices and get a graph on vertices:

$$
\begin{aligned}
\operatorname{aspect} \operatorname{ration}(\Delta)= & \frac{\text { largest edge }}{\min _{\text {vertices }} \text { distance vertices to plane through opponent face }} \geq 1 \\
& \text { well }- \text { shaped }=\text { bounded aspect ratio }
\end{aligned}
$$

History:
Miller - Thorsten
Teng - Vavasis (K-nearest neighbour graph)
Every k-nearest neighbour graph in $\Re^{d}$ is a $k \tau_{\alpha}$ - ply intersection graph
Definition 1. A $k$-ply intersection graph comes from a set of balls $B_{1}, \ldots, B_{n} \in$ $\Re^{d}$ such that no point lies in the interior of more than $k$ balls.
$(i, j) \in E$ if $B_{i} \cap B_{j} \neq \emptyset$
$\tau_{\delta}=$ kissing number in $\Re^{d}$
(max. number of unit balls through another unit ball: $\tau_{2}=6$ )
(planar is a 1-ply intersection graph)
An $\alpha$-overlap graph is a set of interior disjoint balls $B_{1}, \ldots B_{n}$ :
$(i, j) \in E$ if $\alpha B_{i} \cap B_{j} \neq \emptyset$ and $B_{i} \cap \alpha B_{j} \neq \emptyset$
Theorem 1. MTTV
Every well shaped mesh is a bounded degree subgraph of an $\alpha$-overlap graph.
Pf 1. -
Claim 1. for aspect ratio $\leq \beta$, then graph has degree $\leq f(\beta)$. Can lower bound angle of a corner of a simplex, so can upper bound number of simplices at a vertex.

For every vertex, locate a ball at that vertex of radius 0.5 the shortest edge leaving that vertex.

Need to show:
$\frac{\text { longest edge on vertex }}{\text { shortest edge on vertex }}$ is bounded $\leq \beta^{\text {number of neighbours of vertex }}$
Look at a band matrix with bandwith $b$ :
For an ordering $\tau: V \rightarrow[1 . . n]$ bandwith of $G$ under $\tau$

$$
\begin{aligned}
\Phi(G, \tau)= & \min _{b}|\tau(u)-\tau(v)|>b \\
& \Rightarrow(u, v) \notin E
\end{aligned}
$$

Bandwith of $G$ is $\min _{\tau} \Phi(G, \tau)=\Phi(G)$
Cuthill - Mc Kee used BFS: outputs $\tau$ such that:

$$
\begin{gathered}
d\left(\tau^{-1}(1)\right)<d\left(\tau^{-1}(1), u\right) \\
\Rightarrow \tau(u)<\tau(v)
\end{gathered}
$$

$G(n, p)$ graph on n noodes in which each edge $(i, j)$ is chosen to be in graph with prob $p$ indepently.

Theorem 2. For almost all $G \leftarrow G(n, p)$

$$
\Phi(G) \geq n-4 \log _{\frac{1}{1-p}} n
$$

Pf 2. Claim follows if $\Phi(G) \geq n-2 k: \exists U_{1}, U-2:\left|U_{1}\right|=\left|U_{2}\right|=U$ no edges between $U_{1}$ and $U_{2}$. Set $k=2 \log _{\frac{1}{1-p}} n$ :

$$
\binom{n}{k}\binom{n-k}{k}(1-p)^{k^{2}} \leq\left(\frac{e^{n}}{n}\right)^{2^{k}}\left(\frac{1}{n^{2}}\right)^{k}=\binom{e}{k}^{2} k \rightarrow 0
$$

Turner: define $G_{b}(n, p)$ same as $G(n, p)$, but not edges for $|i-j|>b$ (Bandmatrix)

1) $\Phi\left(G_{b}(n, p)\right) \geq b-4 \log _{\frac{1}{1-p}} b$ almost always
2) A level-set heuristic returns $\tau$ at $\Phi(G, \tau) \leq 3(1+\epsilon) b \forall \epsilon>0$ for almost all $G \leftarrow G_{b}(n, p)$
to proof 1) we use the same arguments as before, 2): Let $V_{i}=u: \operatorname{dist}(u, 1)=i$
Theorem 3. for almost all $A A: G \leftarrow G_{b}(n, p) \forall \epsilon>0, b \geq(1+\epsilon) \log _{\frac{1}{1-p} 2} n$

$$
\begin{gathered}
\left|V_{1}\right| \leq(1+\epsilon) p b \\
\left|V_{2}\right| \leq(1+\epsilon)(2-p) b \\
i \geq 3:\left|V_{i}\right| \leq \frac{1+\epsilon}{b} \\
\Phi(G, \tau) \leq \max _{i}\left|V_{i} \cup V_{i+1}\right|
\end{gathered}
$$

Lemma 1. $A A: G \leftarrow G_{b}(n, p) \forall u, v$ such that $|u-v| \leq 2 b-\alpha$ where $\alpha=$ $(1+\epsilon) \log _{\frac{1}{1-p}} 2 n$ exists a path with length $\leq 2$ between.
to prove this show:
The number of possible neighbours of u and r are $2 b-|u-r| \geq \alpha$.

$$
\sum_{i=\alpha}^{2 b-1} n\left(1-p^{2}\right)^{i}=n\left(1-p^{2}\right)^{\alpha} \sum_{i \geq 0}\left(i-p^{2}\right)^{i}=n n^{-1-\epsilon}-p^{-2}=n^{-2} p^{-2} \rightarrow 0
$$

Lemma 2. Let $l_{i}=\min _{i}\left(V_{i}\right), r_{i}=\max _{i}\left(V_{i}\right) . \forall i \geq 3 r_{i}-l_{i} \leq b+\alpha$, follows from:

Lemma 3. $\forall i \geq 3 r_{i}-3 b \leq r_{i-3} \leq l_{i}-(2 b-\alpha)$

