Lecture 2

Lecturer: Dan Spielman
Scribe: Steve Weis

Linear Algebra Review

A $n \mathrm{x} n$ matrix has n singular values. For a matrix A, the largest singular value is denoted as $\sigma_{n}(A)$. Similarly, the smallest is denoted as $\sigma_{1}(A)$. They are defined as follows:

$$
\begin{gathered}
\sigma_{n}(A)=\|A\|=\max _{x} \frac{\|A x\|}{\|x\|} \\
\sigma_{1}(A)=\left\|A^{-1}\right\|^{-1}=\min _{x} \frac{\|A x\|}{\|x\|}
\end{gathered}
$$

There are several other equivalent definitions:

$$
\begin{gathered}
\left\{\sigma_{n}(A), \ldots, \sigma_{1}(A)\right\}=\left\{\sqrt{\lambda_{n}\left(A^{T} A\right)}, \ldots, \sqrt{\lambda_{1}\left(A^{T} A\right)}\right\} \\
\sigma_{i}(A)=\min _{\text {subspacesS,dim }(S)=i} \max _{x \in S} \frac{\|A x\|}{\|x\|}=\max _{\text {subspaces }, \operatorname{dim}(S)=(n-i+1)} \min _{x \in S} \frac{\|A x\|}{\|x\|}
\end{gathered}
$$

Another classic definition is to take a unit sphere and apply A to it, resulting in some hyper-ellipse. σ_{n} will be the length of the largest axis, σ_{n-1} will be the length of the next largest orthogonal axis, etc..

Exercise: Prove that every real matrix A has a singular-value decompsition as $A=U S V$, where U and V are orthogonal matrices and S is non-negative diagonal, and all entries in U, S, and V are real.

Condition Numbers

The singular values define a condition number of a matrix as follows:
$\kappa(A):=\frac{\sigma_{n}(A)}{\sigma_{1}(A)}=\frac{\|A\|}{\left\|A^{-1}\right\|^{-1}}$
Lemma 1. If $A x=b$ and $A(x+\delta x)=b+\delta b$ then

$$
\frac{\|\delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\delta b\|}{\|b\|}
$$

Proof of Lemma 1:

$$
\begin{gathered}
A \delta x=\delta b \Rightarrow \delta x=A^{-1} \delta b \Rightarrow\|b\| \leq\|\delta b\| \cdot\left\|A^{-1}\right\|=\frac{\|\delta b\|}{\sigma_{1}(A)} \\
A x=b \Rightarrow\|b\| \leq\|A\| \cdot\|x\|=\sigma_{n}(A) \cdot\|x\| \Rightarrow \frac{1}{\|x\|} \leq \frac{\sigma_{n}(A)}{\|b\|}
\end{gathered}
$$

Lemma 1 follows from these two inequalities.

Lemma 2. If $A x=b$ and $(A+\delta A)(x+\delta x)=b$ then

$$
\frac{\|\delta x\|}{\|x+\delta x\|} \leq \kappa(A) \frac{\|\delta A\|}{\|A\|}
$$

Exercise: Prove Lemma 2.
In regards to the condition number, sometimes people state things like:
For any function f, the condition number of f at x is defined as:

$$
\lim _{\delta \rightarrow 0} \sup _{\|\delta x\|<\delta} \frac{\|f(x)-f(x+\delta x)\|}{\|\delta x\|}
$$

If f is differentiable, this is equivalent to the Jacobian of $f:\|J(f)\|$. A result of Demmel's is that condition numbers are related to a problem being "ill-posed". A problem $A x=b$ is ill-posed if the condition number $\kappa(A)=\infty$, which occurs iff $\sigma_{1}(A)=0$. Letting $V:=\{A$: $\left.\sigma_{1}(A)=0\right\}$, we state the following Lemma:

Lemma 3. $\sigma_{1}(A)=\operatorname{dist}(A, V)$, i.e. the Euclidian distance from A to the set V.

Proof to Lemma 3: Consider the singular value decomposition (SVD), $A=U S V^{T}, U, V$ orthogonal. S is defined as the diagonal matrix composed of singular values, $\sigma_{1}, \ldots, \sigma_{n}$.

Construct a matrix B to be the singular matrix closest to A. Then $A=\sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{T}$ and $B=\sum_{i=2}^{n} \sigma_{i} u_{i} v_{i}^{T}$. Now consider the Frobenius norm, denoted $\|M\|_{F}$ of A and B : $\|A-B\|_{F}=\left\|\sigma_{1} u_{1} v_{1}^{T}\right\|_{F}=\sigma_{1}$. Since $\sigma_{1}(B)=0$ and $B, \operatorname{dist}(A, V) \leq \sigma_{1}(A)$.

The following claim will help us prove that $\operatorname{dist}(A, V) \geq \sigma_{1}(A)$. For a singular matrix B and let $\delta A=A-B$. The following claim implies that $\|A-B\| \geq \sigma_{1}$, and Lemma 5 implies that $\|A-B\|_{F} \geq\|A-B\|$,

Claim 4. If $(A+\delta A)$ is singular, then $\|\delta A\|_{F} \geq \sigma_{1}$

Proof: $\exists v,\|v\|=1$, s.t. $(A+\delta A) v=0$,
$\|A v\| \geq \sigma_{1}(A) \Rightarrow\|\delta A v\| \geq \sigma_{1} \Rightarrow \sigma_{n}(\delta A) \geq \sigma_{1}$.
by the next lemma, we
Lemma 5. $\|A\|_{F} \geq \sigma_{n}(A)$

Proof: The Froebinus norm, which is the root of the sum of the squares of the entries in a matrix, does not change under a change of basis. That is, if V is an orthonormal matrix, then: $\|A V\|_{F}=\|A\|_{F}$. In particular, if $A=U S V$ is the singular-value decomposition of A, then

$$
\|A\|_{F}=\|U S V\|_{F}=\|S\|_{F}=\sqrt{\sum \sigma_{i}^{2}}
$$

We now state the main theorem that will be proved in this and the next lectures.
Theorem 6. Let A be a d-by-d matrix such that $\forall i, j,\left|a_{i j}\right| \leq 1$. Let G be a d-by-d with Gaussian random variance $\sigma^{2} \leq 1$. We will start to prove the following claims:
a. $\operatorname{Pr}\left[\sigma_{1}(A+G) \leq \epsilon\right] \leq \sqrt{\frac{2}{\pi}} \frac{d^{3 / 2} \epsilon}{\sigma}$
b. $\operatorname{Pr}\left[\kappa(A)>d^{2}\left(1+\sigma \frac{\sqrt{\log 1 / \epsilon}}{\epsilon \sigma}\right)\right] \leq 2 \epsilon$

To give a geometric characterization of what it means for σ_{1} to be small. Let a_{1}, \ldots, a_{d} be the columns of A. Each a_{i} is a d-element vector. We now define height $\left(a_{1}, \ldots, a_{d}\right)$ as the shortest distance from some a_{i} to the span of the remaining vectors:

$$
\operatorname{height}\left(a_{1}, \ldots, a_{d}\right)=\min _{i} \operatorname{dist}\left(a_{i}, \operatorname{span}\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{d}\right)\right)
$$

Lemma 7. $\operatorname{height}\left(a_{1}, \ldots, a_{d}\right) \leq \sqrt{d} \sigma_{1}(A)$

Proof: Let v be a vector such that $\|v\|=1,\|A v\|=\sigma_{1}(A)=\left\|\sum_{i=1}^{d} a_{i} v_{i}\right\|$ Since v is a unit vector, some coordinate $\left|v_{i}\right| \geq \frac{1}{\sqrt{d}}$. Assume it is v_{1}. Then:

$$
\left\|\sum_{i=2}^{d} a_{i} \frac{v_{i}}{v_{1}}+a_{1}\right\|=\frac{\sigma_{1}}{v_{1}} \leq \sqrt{d} \sigma_{1}(A) \Rightarrow \operatorname{dist}\left(a_{1}, \operatorname{span}\left(a_{2}, \ldots, a_{d}\right)\right) \leq \sigma_{1}(A) \sqrt{d}
$$

Lemma 8. $\operatorname{Pr}\left[h e i g h t\left(a_{1}+g_{1}, \ldots, a_{n}+g_{n}\right) \leq \epsilon\right] \leq \frac{d \epsilon}{\sigma}$

This lemma follows from the union bound applied to the following Lemma:

Lemma 9. $\operatorname{Pr}\left[\operatorname{dist}\left(a_{1}+g_{1}, \operatorname{span}\left(a_{2}+g_{2}, \ldots, a_{d}+g_{d}\right)\right) \leq \epsilon\right] \leq \frac{\epsilon}{\sigma}$

Proof of Lemma 9: This proof will take advantage of the following lemmas regarding gaussian distributions:

Lemma 10. A a Gaussian distribution g has density:

$$
\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{d} \cdot e^{\frac{\|g\| \|^{2}}{2 \sigma^{2}}}
$$

Lemma 11. A univariate Gaussian x with mean x_{0} and standard deviation σ has density:

$$
\frac{1}{\sqrt{2 \pi} \sigma} \cdot e^{\frac{-\left(x-x_{0}\right)^{2}}{2 \sigma^{2}}}
$$

Lemma 12. The Gaussian distribution is spherically symmetric. That is, it is invariant under orthogonal changes of basis.

Exercise: Prove Lemma 12.
Returning to the proof, fix a_{2}, \ldots, a_{d} and g_{2}, \ldots, g_{d}. Let $S=\operatorname{span}\left(a_{2}+g_{2}, \ldots, a_{d}+g_{d}\right)$. We want to upperbound the distance of the vector $a_{1}+g_{1}$ to the multi-dimensional plane S, which has $\operatorname{dim}(S)=d-1$. Since the vector is of higher dimension, the distance to the span will be bounded by one element. We can then just select x to be a univariate Gaussian random variable such that $x=g_{11}$ and $x_{0}=a_{11}$. Using Lemma 11 and the fact that $e^{\frac{-g^{2}}{2 \sigma^{2}}} \leq 1$, we can prove lemma 12 :

$$
\operatorname{Pr}\left[\left|g_{11}-a_{11}\right|<\epsilon\right]=\int_{a_{11}-\epsilon}^{a_{11}+\epsilon} \frac{1}{\sqrt{2 \pi} \sigma} \cdot e^{\frac{-g_{11}^{2}}{2 \sigma^{2}}} \leq \frac{2 \epsilon}{\sqrt{2 \pi} \sigma}=\sqrt{\frac{2}{\pi}} \frac{\epsilon}{\sigma} \leq \frac{\epsilon}{\sigma}
$$

Part (a) of Theorem 6 follows from these lemmas and claims.

