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18.409 The Behavior of Algorithms in Practice 2/12/2 

Lecture 2 

Lecturer: Dan Spielman Scribe: Steve Weis 

Linear Algebra Review 

A n x n matrix has n singular values. For a matrix A, the largest singular value is denoted 

as σn(A). Similarly, the smallest is denoted as σ1(A). They are defined as follows: 

σn(A) = ||A|| = max 
||Ax|| 

x ||x|| 

σ1(A) = ||A−1||−1 = min 
||Ax|| 

x ||x||
There are several other equivalent definitions: 

{σn(A), . . . , σ1(A)} = λn(AT A), . . . , λ1(AT A)}{ 

σi(A) = min max 
||Ax|| 

= max min 
||Ax|| 

subspacesS,dim(S)=i x∈S ||x|| subspacesS,dim(S)=(n−i+1) x∈S ||x|| 

Another classic definition is to take a unit sphere and apply A to it, resulting in some 

hyperellipse. σn will be the length of the largest axis, σn−1 will be the length of the next 

largest orthogonal axis, etc.. 

Exercise: Prove that every real matrix A has a singularvalue decompsition as A = USV , 

where U and V are orthogonal matrices and S is nonnegative diagonal, and all entries in 

U , S, and V are real. 

Condition Numbers 

The singular values define a condition number of a matrix as follows: 

κ(A) := σn (A) = ||A||
σ1 (A) ||A−1||−1 

Lemma 1. If Ax = b and A(x + δx) = b + δb then 

||δx||
||x|| 

≤ κ(A) 
||δb||
||b|| 
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Proof of Lemma 1: 

||δb||
Aδx = δb ⇒ δx = A−1δb ⇒ ||b|| ≤ ||δb|| · ||A−1|| = 

σ1(A) 

1 σn(A)
Ax = b ⇒ ||b|| ≤ ||A|| · ||x|| = σn(A) · ||x|| ⇒ 

||x||
≤ 

||b|| 

Lemma 1 follows from these two inequalities. 

Lemma 2. If Ax = b and (A + δA)(x + δx) = b then 

||δx||
||x + δx|| 

≤ κ(A) 
||δA||
||A|| 

Exercise: Prove Lemma 2. 

In regards to the condition number, sometimes people state things like: 

For any function f , the condition number of f at x is defined as: 

||f(x) − f(x + δx)||
lim sup 
δ 0→ ||δx||<δ ||δx|| 

If f is differentiable, this is equivalent to the Jacobian of f : ||J(f)||. A result of Demmel’s 

is that condition numbers are related to a problem being “illposed”. A problem Ax = b is 

illposed if the condition number κ(A) = ∞, which occurs iff σ1(A) = 0. Letting V := {A : 

σ1(A) = 0}, we state the following Lemma: 

Lemma 3. σ1(A) = dist(A, V ), i.e. the Euclidian distance from A to the set V. 

Proof to Lemma 3: Consider the singular value decomposition (SVD), A = USV T , U, V 

orthogonal. S is defined as the diagonal matrix composed of singular values, σ1, . . . , σn. 

nConstruct a matrix B to be the singular matrix closest to A. Then A = σiuivi
T 

i=1 
nand B = i=2 σiuivi

T . Now consider the Frobenius norm, denoted ||M ||F of A and B: 

= T = σ1. Since σ1(B) = 0 and B, dist(A, V ) ≤ σ1(A).||A − B||F ||σ1u1v1 ||F 

The following claim will help us prove that dist(A, V ) ≥ σ1(A). For a singular matrix B 

and let δA = A − B. The following claim implies that ||A − B|| ≥ σ1, and Lemma 5 implies 

that ||A − B||F ≥ ||A − B||, 

Claim 4. If (A + δA) is singular, then ||δA||F ≥ σ1 
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Proof: ∃v, ||v|| = 1, s.t.(A + δA)v = 0, 

σn(δA) ≥ σ1.||Av|| ≥ σ1(A) ⇒ ||δAv|| ≥ σ1 ⇒ 

by the next lemma, we 

Lemma 5. ||A||F ≥ σn(A) 

Proof: The Froebinus norm, which is the root of the sum of the squares of the entries in 

a matrix, does not change under a change of basis. That is, if V is an orthonormal matrix, 

then: ||AV ||F = In particular, if A = USV is the singularvalue decomposition of ||A||F . 

A, then �� 
= ||USV ||F = = σi 

2 .||A||F ||S||F 

We now state the main theorem that will be proved in this and the next lectures. 

Theorem 6. Let A be a dbyd matrix such that ∀i, j, aij ≤ 1. Let G be a dbyd with| |
Gaussian random variance σ2 ≤ 1. We will start to prove the following claims: 

a. Pr[σ1(A + G) ≤ �] 2 d3/2� 
π σ≤


√
log 1/�
b. Pr[κ(A) > d2(1 + σ �σ )] ≤ 2� 

To give a geometric characterization of what it means for σ1 to be small. Let a1, . . . , ad be 

the columns of A. Each ai is a d−element vector. We now define height(a1, . . . , ad) as the 

shortest distance from some ai to the span of the remaining vectors: 

height(a1, . . . , ad) = min dist(ai, span(a1, . . . , ai−1, ai+1, . . . , ad))
i 

Lemma 7. height(a1, . . . , ad) ≤
√

dσ1(A) 

Proof: Let v be a vector such that ||v|| = 1, ||Av|| = σ1(A) = 
�d

i=1 aivi|| Since v is a ||
1unit vector, some coordinate |vi| ≥ √
d 
. Assume it is v1. Then: 

d� vi σ1 || 
i=2 

ai 
v1 

+ a1|| = 
v1 

≤
√

dσ1(A) ⇒ dist(a1, span(a2, . . . , ad)) ≤ σ1(A)
√

d 

d�Lemma 8. Pr[height(a1 + g1, . . . , an + gn) ≤ �] σ≤ 

This lemma follows from the union bound applied to the following Lemma: 
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� Lemma 9. Pr[dist(a1 + g1, span(a2 + g2, . . . , ad + gd)) ≤ �] σ≤ 

Proof of Lemma 9: This proof will take advantage of the following lemmas regarding 

gaussian distributions: 

Lemma 10. A a Gaussian distribution g has density: 

2 

( √
2
1 

πσ
)d · 

||g||
e 2σ2 

Lemma 11. A univariate Gaussian x with mean x0 and standard deviation σ has density: 

e 
1 −(x−x0)2 

2σ2√
2πσ 

· 

Lemma 12. The Gaussian distribution is spherically symmetric. That is, it is invariant 

under orthogonal changes of basis. 

Exercise: Prove Lemma 12. 

Returning to the proof, fix a2, . . . , ad and g2, . . . , gd. Let S = span(a2 + g2, . . . , ad + gd). 

We want to upperbound the distance of the vector a1 + g1 to the multidimensional plane 

S, which has dim(S) = d − 1. Since the vector is of higher dimension, the distance to 

the span will be bounded by one element. We can then just select x to be a univariate 

Gaussian random variable such that x = g11 and x0 = a11. Using Lemma 11 and the fact 
2−g

that e 2σ2 ≤ 1, we can prove lemma 12: 

� 2 
� 

a11+� 1 −g11 2� 2 � � 
Pr[ g11 − a11 < �] = 

a11−� 
√

2πσ 
· e 2σ2 ≤ √

2πσ 
= 

π σ 
≤ 

σ
| | 

Part (a) of Theorem 6 follows from these lemmas and claims. 
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