Proof of Lemma 1.

Let u_{θ} be a unit vector along $a_j a_k$ (and assume that z is a unit vector). Look at

$$\mu(a_k) = \mu(tz + ru_\theta) = e^{-\frac{d^2}{2}} e^{-\frac{(s+r)^2}{2}},$$

where d and s are defined at figure 2.

Proposition 1. For s > 1, $r \le \frac{1}{s}$

$$\frac{e^{-\frac{s^2}{2}}}{e^{-\frac{(s+r)^2}{2}}} \le e^2$$

As a corollary, for $0 < r_1 < r_2 < \frac{1}{\sqrt{8 \lg n}}$ holds

$$\frac{\mu(tz+r_1u_{\theta})(l+r_1)}{\mu(tz+r_2u_{\theta})(l+r_2)} \le e^2.$$

Figure 2:

Proposition 2. Let f be s.t. for $0 < x_1 < x_2 < K$ and $\frac{f(x_1)}{f(x_2)} < c$. Then

$$\int_{0}^{\epsilon} f(x) \, dx \\ \int_{K}^{K} f(x) \, dx \leq \frac{\epsilon c}{K}.$$

Proof. One can split the interval [0, K] into $\frac{K}{\epsilon}$ subintervals of length ϵ . The integral of f on each subinterval is lower bounded by $c^{-1} \int_{0}^{\epsilon} f(x) dx$, thus $\int_{0}^{K} f(x) dx \ge \frac{K}{\epsilon} c^{-1} \int_{0}^{\epsilon} f(x)$. \Box

It is sufficient to choose $K = 1/\sqrt{8 \lg n}$ to finish the proof of Lemma 1.

Proof of Lemma 2.

Let

$$g(\theta) = \underbrace{\left(\int_{a} [CH_{j,k}] \prod \mu(a_i)\right)}_{g_1(\theta)} \sin(\theta) \underbrace{\mu(tz + ru_\theta)\mu(tz - lu_\theta)}_{g_2(\theta)}$$

In order to estimate the ratio (2) it will be sufficient to confine ourselves to $0 < \theta < \frac{1}{16 \lg n}$ in the denominator. For $0 < \theta_1 < \theta_2 < \frac{\pi}{2}$ holds

$$\frac{g_1(\theta_1)}{g_1(\theta_2)} \le 1.$$

To see this, notice that $g_1(\theta)$ is the probability of the rest of the points a_i lying on the origin side of the line $a_j a_k$. This probability decreases when the distance of the line $a_j a_k$ to \bar{o} decreases, thus $g_1(\theta)$ is monotone.

As in Proposition 1, for $t < \sqrt{8 \lg n}$; $l, r < 2\sqrt{8 \lg n}$; $0 < \theta_1 < \theta_2 < \frac{1}{16 \lg n}$ holds

$$\frac{\mu(tz + ru_{\theta_1})}{\mu(tz + ru_{\theta_2})} < e^2,$$

which implies for $0 < \theta_1 < \theta_2 < \frac{1}{16 \lg n}$

$$\frac{g_2(\theta_1)}{g_2(\theta_2)} \le e^2.$$

Finally, for small values of θ , $\sin(\theta) \sim \theta$, so for $0 < \theta_1 < \theta_2 < \frac{1}{16 \lg n}$

$$\frac{g(\theta_1)}{g(\theta_2)} \le 2e^4 \frac{\theta_1}{\theta_2}.$$

The following fact is the analog of Proposition 2:

Proposition 3. If for $x_1 < x_2$ $\frac{f(x_1)}{f(x_2)} \le c \frac{x_1}{x_2}$ then

$$\int_{0}^{\epsilon} \frac{f(x) \, dx}{\int_{0}^{K} f(x) \, dx} \le 4c \left(\frac{\epsilon}{K}\right)^2$$

It is left to set $K = \frac{1}{16 \lg n}$. The lemma is proven.

At the end we justify the change of variables $(a_j, a_k) \rightarrow (l, r, t, \theta)$ that we made in the proof and compute the Jacobian of this transform. Let $a = a_j$ and $b = a_k$ be two points in \mathbb{R}^2 , specified by four parameters l, r, h, θ as shown on figure 1. By the straightforward calculation,

$$a_x = l\sin(\theta)$$
$$a_y = t - l\cos(\theta)$$
$$b_x = r\sin(\theta)$$
$$b_y = t + r\cos(\theta)$$

The Jacobi matrix

$$J = \begin{pmatrix} \partial a_x & \partial a_y & \partial b_x & \partial b_y \\ 0 & 0 & \sin(\theta) & \cos(\theta) \\ \sin(\theta) & -\cos(\theta) & 0 & 0 \\ l\cos(\theta) & l\sin(\theta) & r\cos(\theta) & -r\sin(\theta) \\ 0 & 1 & 0 & 1 \end{pmatrix} \quad \frac{\partial r}{\partial t}$$

and the Jacobian

$$|\det J| = (l+r)\sin(\theta),$$

hence

$$da db = (l+r)\sin(\theta) dr dl d\theta dt$$
.