
Proof of Lemma 1. 

Let u� be a unit vector along aj ak (and assume that z is a unit vector). Look at 
2 (s+r)2 

d

µ(ak ) = µ(tz + ru�) = e− 
2 e− 

2 , 

where d and s are defined at figure 2. 

Proposition 1. For s > 1, r √ 1 
s 

2 
s 
2e− 

2 
(s+r)2 √ e 

e− 
2 

1As a corollary, for 0 < r1 < r2 < �
8 lg n 

holds 

µ(tz + r1u� )(l + r1) 2 . 
µ(tz + r2u� )(l + r2) 

√ e 
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Figure 2: 

f (x1 )Proposition 2. Let f be s.t. for 0 < x1 < x2 < K and 
f (x2 ) < c. Then 

0 
f(x) dx 

αc 
.√ 

K 
f(x) dx 

K� 

0 

Proof. One can split the interval [0, K] into K subintervals of length α. The integral of f 
K�

on each subinterval is lower bounded by c−1 K c−1 f(x).f(x) dx, thus f(x) dx →
0 0 0 

It is sufficient to choose K = 1/
�

8 lg n to finish the proof of Lemma 1. 

Proof of Lemma 2. 

Let 

⎛ 

g(∂) = [CHj,k] µ(ai) 
⎞ 

sin(∂) µ(tz + ru� )µ(tz − lu� )⎝


a g2(�) 

g1(�) 
⎞


In order to estimate the ratio (2) it will be sufficient to confine ourselves to 0 < ∂ < 16 lg n 

in the denominator. For 0 < ∂1 < ∂2 < � holds2 

g1(∂1) 
g1(∂2) 

√ 1. 
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� � 

To see this, notice that g1(∂) is the probability of the rest of the points ai lying on the 

origin side of the line aj ak . This probability decreases when the distance of the line aj ak 

to ō decreases, thus g1(∂) is monotone.


1
As in Proposition 1, for t < 
�

8 lg n; l, r < 2
�

8 lg n; 0 < ∂1 < ∂2 < 16 lg n holds 

µ(tz + ru�1 ) 2< e , 
µ(tz + ru�2 ) 

1which implies for 0 < ∂1 < ∂2 < 16 lg n 

g2(∂1) 2 . 
g2(∂2) 

√ e 

Finally, for small values of ∂, sin(∂) � ∂, so for 0 < ∂1 < ∂2 < 1 
16 lg n 

g(∂1 ) 4 ∂1 
. 

g(∂2 ) 
√ 2e 

∂2 

The following fact is the analog of Proposition 2: 

f (x1 ) x1Proposition 3. If for x1 < x2 f (x2 ) √ c 
x2 

then 

0 
f(x) dx � α �2 

K�
√ 4c 

K 
f(x) dx 

0 

It is left to set K = 1 . The lemma is proven. 16 lg n 

At the end we justify the change of variables (aj , ak ) ∀ (l, r, t, ∂) that we made in the 

proof and compute the Jacobian of this transform. Let a = aj and b = ak be two points 

in R2 , specified by four parameters l, r, h, ∂ as shown on figure 1. By the straightforward 

calculation, 

ax = l sin(∂) 

ay = t − l cos(∂) 

bx = r sin(∂) 

by = t + r cos(∂) 
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� 

The Jacobi matrix 

�ax �ay �bx �by 
⎛ 

0 0 sin(∂) cos(∂) �r 

J =

�
�
�
�
�


sin(∂) − cos(∂) 0 0 

l cos(∂) l sin(∂) r cos(∂) −r sin(∂)


⎜
⎜
⎜
⎜
⎝


�l 

�∂ 

0 1 0 1 �t 

and the Jacobian 

| det J | = (l + r) sin(∂), 

hence 

da db = (l + r) sin(∂) dr dl d∂ dt . 
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