18.409 The Behavior of Algorithms in Practice
 4/18/02 and 4/23/02
 Lecture 15/16
 Lecturer: Dan Spielman
 Scribe: Mikhail Alekhnovitch

Let a_{1}, \ldots, a_{n} be independent random gaussian points in the plane with variance 1. Today lecture is devoted to the following question: what is the expected size of their convex hull?

Theorem 1 (Renyi-Salanke).

$$
\underset{a_{1}, \ldots, a_{n}}{\mathrm{E}}[\text { size of C.H. }]=\Theta(\sqrt{\lg n}) .
$$

In this lecture we will prove a weaker bound $O\left(\lg ^{2} n\right)$. First we notice, that

$$
\operatorname{Pr}[\bar{o} \notin \text { C.H. }] \leq\left(\frac{3}{4}\right)^{\frac{n}{3}}
$$

This is because the probability that $\bar{o} \notin \mathrm{C} . \mathrm{H}$. of three points is exactly $3 / 4$, so we can divide all points into $n / 3$ groups of 3 , and each group covers o with probability $1 / 4$. Thus, with exponentially high probability $\bar{o} \in C . H$. so we can assume for the rest of the lecture that this is always the case.

For a vector z consider the edge $\left(a_{j}, a_{k}\right)$ of the convex hull that crosses z clockwise. Denote

$$
\left.P_{z}(\epsilon)=\operatorname{Pr}\left[\operatorname{ang}\left(z \bar{o} a_{k}\right)\right)<\epsilon\right] .
$$

Then clearly

$$
\mathrm{E}[\text { size of C.H. }] \leq \lim _{\epsilon \rightarrow 0} \frac{2 \pi}{\epsilon} P_{z}(\epsilon)+n\left(\frac{3}{4}\right)^{\frac{n}{3}} .
$$

Denote by $C H_{j, k}$ the event that $\left(a_{j}, a_{k}\right)$ is an edge of $C H\left(a_{1}, \ldots, a_{n}\right)$ and other points lie on the origin side of the line $a_{j} a_{k}$. For a fixed vector z, Cross $_{j k}$ is the event that the edge $\left(a_{j}, a_{k}\right)$ crosses z clockwise.

$$
P_{z}(\epsilon)=\sum_{j, k} \operatorname{Pr}\left[C H_{j, k} \wedge \text { Cross }_{j, k}\right] \cdot \operatorname{Pr}\left[a n g\left(z \bar{o} a_{k}\right)<\epsilon \mid C H_{j, k} \wedge \text { Cross }_{j, k}\right]=
$$

Figure 1:
$=\operatorname{Pr}\left[\operatorname{ang}\left(z \bar{o} a_{k}\right)<\epsilon \mid C H_{j, k} \wedge \operatorname{Cross}_{j, k}\right]$
for any choice of j and k (the latter equation follows because of the symmetry). Assume that $\left(a_{j}, a_{k}\right)$ crosses z. It will be convenient to choose the coordinates θ, t, l, r instead of a_{j}, a_{k} (see figure 1). Let $\alpha=\operatorname{ang}\left(z o a_{k}\right)$. Then the probability $P_{z}(\epsilon)$ can be expressed as:

$$
\frac{\int_{t, \theta}\left(\int_{i \neq j, k}\left[C H_{j, k}\right]\right) \cdot \int_{l, r \geq 0}([\alpha<\epsilon])(l+r) \sin (\theta) \mu\left(a_{j}\right) \mu\left(a_{k}\right) d \theta d t d l d r}{\int_{t, \theta}\left(\int_{i \neq j, k}\left[C H_{j, k}\right]\right) \cdot \int_{l, r \geq 0}(l+r) \sin (\theta) \mu\left(a_{j}\right) \mu\left(a_{k}\right) d \theta d t d l d r}
$$

We need the following claim that estimates the maximal norm of n gaussian points in the plane.

Claim 2.

$$
\operatorname{Pr}\left[\max _{i}\left\|a_{i}\right\|>\sqrt{8 \lg n}\right]<\frac{1}{n} .
$$

In the assumption of the claim, we can bound $t \leq \sqrt{8 \lg n} ; r, l \leq 2 \sqrt{8 \lg n}$. Once again we can assume that this is always the case (it can change the expectation at most by 1). When α is sufficiently small,

$$
\alpha>\frac{1}{2} \tan (\alpha)=\frac{1}{2} \cdot \frac{r \sin (\theta)}{t+r \cos (\theta)} \geq \frac{r \sin (\theta)}{6 \sqrt{8 \lg n}} .
$$

Thus

$$
\mathrm{E}[\text { size of C.H. }] \leq \lim _{\epsilon \rightarrow 0} \frac{2 \pi}{\epsilon} P_{z}(\epsilon)+n\left(\frac{3}{4}\right)^{\frac{n}{3}} \leq \lim _{\epsilon \rightarrow 0} \frac{2 \pi}{\epsilon} \operatorname{Pr}\left[\frac{r \sin (\theta)}{6 \sqrt{8 \lg n}}<\epsilon\right]+n\left(\frac{3}{4}\right)^{\frac{n}{3}}+1 .
$$

We estimate the latter probability using the Combination Lemma from Lecture 19. Namely, we show that
$\operatorname{Pr}[r<\epsilon]<O(\sqrt{\lg n} \cdot \epsilon)$
$\operatorname{Pr}[\sin (\theta)<\epsilon]=O\left(\lg n \cdot \epsilon^{2}\right)$.
Thus, the following two lemmas imply the theorem:
Lemma 1. $\forall t \leq \sqrt{8 \lg n}$

$$
\begin{equation*}
\frac{\int_{r \geq 0}[r<\epsilon](l+r) \mu\left(a_{k}\right) d r}{\int_{r \geq 0}(l+r) \mu\left(a_{k}\right) d r} \leq O(\sqrt{\lg n} \cdot \epsilon) \tag{1}
\end{equation*}
$$

Lemma 2. $\forall t \leq \sqrt{8 \lg n}, l, r \leq 2 \sqrt{8 \lg n}$

$$
\begin{equation*}
\frac{\int_{\theta}[\sin (\theta) \leq \epsilon]\left(\int_{i \neq j, k}\left[C H_{j, k}\right]\right) \sin (\theta) \mu\left(a_{j}\right) \mu\left(a_{k}\right)}{\int_{\theta}\left(\int_{i \neq j, k}\left[C H_{j, k}\right]\right) \sin (\theta) \mu\left(a_{j}\right) \mu\left(a_{k}\right)} \leq O\left((\lg n \cdot \epsilon)^{2}\right) \tag{2}
\end{equation*}
$$

