MIT 18. 385j /2. 036j

First Problem Set

Suggest	ed R	Readings (textbook): Chapters 1-2-3.							
Suggest	ed P	Problems (textbook):							
Čh. :	2: 2	2. 2. 9	2.2.12	2. 2. 13	2.3.3	2.4.9	2. 6. 1	2.8.3	2.8.5
Ch.	3: 3	. 3. 1	3.4.5	3.4.7	3.4.8	3.4.9	3.4.10		
Problems to hand in for grading (textbook):									
Ch. 1	2: 2	. 2. 8	2. 2. 10	2.3.2	2.5.4	2.5.5	2.5.6		
Ch.	3: 3	. 2. 6	3.2.7	3.3.2	3.4.6				

PROBLEM TO HAND IN FOR GRADING (not in textbook):

PDE_BI ow_Up

In the lectures we considered the PDE problem initial value problem:

 $u_t + u^*u_x = 0; u(x, 0) = F(x).$

Notation:

u_t and u_x are the partial derivatives, with respect to t and x (resp.).

- 2) t is time and x is space.
- 3) * is the multiplication operator. 4) ^ denotes taking a power $[u^2 is$ the square of u]. 4) u = u(x, t) is a function of x and t.

We showed that the solution to this problem ceased to exist at a finite time (the derivatives of u become infinite and, beyond that, u becomes multiple valued) whenever dF/dx was negative anywhere.

This was shown "graphically". It can be shown analytically as follows: Consider the CHARACTERISTIC CURVES dx/dt = u(x, t), --- A.

as instroduced in the lecture. Along each characteristic curve, one has du/dt = 0, as shown in class. Now, let $v = u_x$. Then v satisfies the equation [obtained --- B. by taking the partial derivative with respect to x of the equation

for u]:

 $v_t + u^*v_x + v^2 = 0.$

Thus, along characteristics: $dv/dt + v^2 = 0$. Thus, if v is negative anywhere, v develops an infinity in finite time. But the initial conditions for v, along the characteristic such that $x(0) = x_0$, is $v(0) = dF/dx(x_0)$.

Hence the conclusion follows: the solution u = u(x, t) to the problem ceases to exist at a finite time (with the derivative u_x of u becoming infinite somewhere) whenever dF/dx is negative anywhere.

CONSIDER NOW THE PROBLEM:

 $u_t + u^*u_x = -u; u(x, 0) = F(x).$

Show that the solution to this second problem ceases to exist at a finite time, provided that dF/dx < C < 0, where C is a finite (non-zero) constant. Again, what happens is that the derivatives become infinite. Calculate C.

Hint: Use an approach analog to the one used above: get an ODE for the derivative $v = u_x$ along the characteristics, and study the conditions under which the solutions of the ODE blow-up in a finite time.

A graphical approach for how the solution to $u_t + u^*u_x = -u$ behaves in time will also work, but the approach using the ODE for v along characteristics turns out to be simpler.