M T 18. 385j / 2. 036j

First Problem Set


```
Suggested Problems (textbook)
```

Ch. 2: 2.2.9 2.2.12 2.2 .13
2.2.13 2.3.3
2.4.9
2.6.1
2.8.3
2.8.5
Ch. 3: 3.3.1 $3.4 .5 \quad 3.4 .7$
3.4.8
$3.4 .9 \quad 3.4 .10$

Ch. 2: 2.2.8
2.2.10
2.3.2 2.5 .4
2.5.5 2.5.6
Ch. 3: 3.2.6
3.2.7
3.3.2 3.4 .6

PROBLEM TO HAND IN FOR GRADING (not in textbook):
PDE_BIOW_Up
I n the lectures we considered the PDE problem initial value problem:

$$
u_{-} t+u^{*} u_{-} x=0 ; u(x, 0)=F(x)
$$

Notation:

1) u_{-}and $u_{-} x$ are the partial derivatives, with respēct to t and x (resp.).
2) t is time and x is space.
3) * is the multiplication operator.
4) ^ denotes taking a power [u^2 is the square of u].
5) $u=u(x, t)$ is a function of x and t.

We showed that the solution to this problem ceased to exist at a finite time (the derivatives of u become infinite and, beyond that, u becomes multiple valued) whenever $d F / d x$ was negative anywhere.

This was shown "graphically". It can be shown analytically as follows:
\cdots.. Consider the CHARACTERISTIC CURVES $d x / d t=u(x, t)$, as instroduced in the lecture.
… B. Along each characteristic curve, one has duldt $=0$, as shown in class. Now, let $v=u_{-} x$. Then v satisfies the equation [obtained by taking the partial derivative with respect to x of the equation for u]:

$$
v_{-} t+u^{*} v_{-} x+v^{\wedge} 2=0 .
$$

Thus, along characteristics: $\quad d v / d t+v^{\wedge} 2=0$. Thus, if $v i s$ negative anywhere, v develops an infinity in finite time. But the initial conditions for v, along the characteristic such that $x(0)=x _0$, is $v(0)=d F / d x(x-0)$.
Hence the conclūsion follows: the so「ution $u=u(x, t)$ to the problem ceases to exist at a finite time (with the derivative $u^{\prime} x$ of u becoming infinite somewhere) whenever $d F / d x$ is negative anywhere.
$\bar{C} \bar{O} \bar{S} \bar{S} T \bar{D} \bar{E} \bar{R}^{-} \bar{N} \bar{O} \bar{W}{ }^{-} \bar{T} \overline{H E}^{-} \bar{P} \bar{R} \bar{O} \bar{B}[\bar{E} \bar{M}:$

$$
u_{-} t+u^{*} u_{-} x=-u_{;} u(x, 0)=F(x)
$$

Show that the solution to this second problem ceases to exist at a finite time, provided that $d F / d x<C<0$, where C is a finite (non-zero) constant. Again, what happens is that the derivatives become infinite. Calculate C.

Hint: Use an approach analog to the one used above: get an ODE for the derivative $v=u^{-} x$ along the characteristics, and study the conditions under which the solutions of the ODE blow-up in a finite time.

