18.369 Mathematical Methods in Nanophotonics Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

18.369 Midterm Exam (Spring 2008)

April 7, 2008

You have two hours. There are three problems, each worth 30 points.

Problem 1: Waveguide Gaps

In figure 1(a) is shown a 2d hollow metallic waveguide of width L. If we solve for the 2d TM-polarized (E_z only, z-invariant) eigensolutions in this geometry, they are of the form:

$$E_z(x, y, t) = \sin\left(\frac{\pi n}{L}y\right)e^{i(kx-\omega t)},$$

with n a positive integer and eigenfrequencies (bands) $\omega_n(k) = \sqrt{k^2 + (\pi n/L)^2}.$

[Useful formulae: given a set of degenerate eigenmodes $\{\mathbf{E}_{\ell}\}$ with an unperturbed eigenvalue ω , orthonormalized so that $\langle \mathbf{E}_{\ell}, \varepsilon \mathbf{E}_m \rangle = \delta_{\ell,m}$, then you should recall that the first-order perturbations $\Delta \omega^{(1)}$ due to a small $\Delta \varepsilon$ are the eigenvalues of the matrix $A_{\ell m} =$ $-\frac{\omega}{2} \langle \mathbf{E}_{\ell}, \Delta \varepsilon \mathbf{E}_m \rangle$. And the eigenvalues λ of a 2 × 2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ are, of course, the roots of $\lambda^2 - (a + d)\lambda + (ad - bc) = 0$. Some handy trig. identities: $2\cos^2(u) = 1 + \cos(2u), 2\sin^2(u) = 1 - \cos(2u),$ $2\sin(u)\cos(v) = \sin(u + v) + \sin(u - v).$]

(a) Now, we will take this waveguide and fill it with a *small* periodic (period a) perturbation ±Δε as shown in figure 1(b): alternating thickness a/2 layers of ε = 1 + Δε and ε = 1 - Δε. Sketch the band diagram, assuming a = L/2, by starting with the "folded" bands for n = 1,2,3 (sketched reasonably quantitatively) and then showing qualitatively (no calculations necessary) how they would change for a small Δε ≈ 0.1. (What happens when an n = 1 and n = 2 mode cross? What about n = 1 and n = 3?)

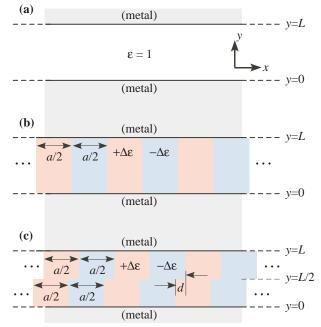


Figure 1: (a) Schematic of a 2d metal waveguide of width L, which supports modes propagating along the x direction. (b) A perturbation $\pm \Delta \varepsilon$ is introduced via two periodic layers of thickness a/2 filling the waveguide. (c) The perturbation is modified: for half of the thickness $(y \in [0, L/2])$, the layers are shifted in the x direction by a distance d.

- (b) Next, let us further change the perturbation as shown in figure 1(c): for half of the waveguide (y ∈ [0, L/2]), the perturbation is shifted in the x direction by some distance d. Using first-order perturbation theory, estimate the size of the lowest-ω gap (to first-order in Δε, as a fraction of mid-gap) that opens at k = π/a in the n = 1 band for two cases: d = 0 and d = a/2. [Hint: you can use symmetry to eliminate or simplify many of the integrals if you choose your x origin and unperturbed modes appropriately.]
- (c) What is the space group of the structure in figure 1(c) (including all rotations, mirrors, translations, etc.) for the two cases d = 0 and d = a/2?

Problem 2: Symmetry and Stuff

As shown in figure 2, we arrange N identical masses m > 0 onto a circle, uniformly spaced, and attach each to its neighbors by a spring constant $\kappa > 0$. The masses are constrained to move along the circle, and the motion of each mass is described by an angle ϕ_{ℓ} as shown, where $\phi_{\ell} = 0$ corresponds to the initial position for mass ℓ .

If we assume a time-dependence $e^{-i\omega t}$ as usual, then the frequencies ω satisfy the eigenproblem $\hat{\Theta}\psi = \omega^2\psi$, where $\psi = (\phi_1, \phi_2, \dots, \phi_N)^T$ and $\hat{\Theta}$ is the $N \times N$ realsymmetric positive-semi-definite matrix:

$$\hat{\Theta} = \frac{\kappa}{m} \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 & -1 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 2 & -1 \\ -1 & 0 & \cdots & 0 & -1 & 2 \end{pmatrix}$$

- (a) Obviously, the system in figure 2 is invariant under C_N rotations, corresponding to a cyclic shift φ₁ → φ₂, φ₂ → φ₃, ..., φ_{N-1} → φ_N, φ_N → φ₁. Show explicitly that this Ô commutes with cyclic shifts.
- (b) Let D(n) be the representation matrix for a rotation C_N^n (i.e. a cyclic shift *n* times). What are the possible irreducible representations for this group (the *cyclic group* of order *N*)? [Hint: D(n)D(n') = D(?).]

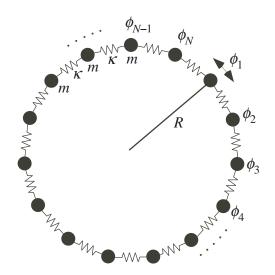
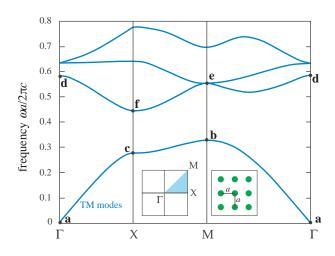


Figure 2: N identical masses m arranged on a circle, connected with spring constants κ , and allowed to slide freely on the circle, where ϕ_{ℓ} denotes the angular displacement of the ℓ -th mass from its initial position (equally spaced).

- (c) Using your answer from (b), solve for the eigenfrequencies ω and the corresponding eigenvectors.
- (d) Using your answer from (b), give the projection operator onto the irreducible representations. Also, what does this operator become in the limit $N \rightarrow \infty$?



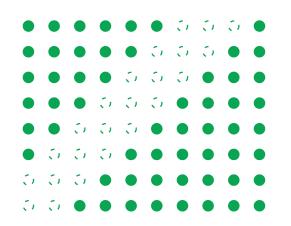


Figure 4: Linear defect in the diagonal (Γ –M) direction of a square lattice of rods formed by removing N = 3adjacent diagonal rows of rods (removed rods shown as dashed outlines).

Figure 3: TM band diagram of a square lattice (lattice constant a) of circular dielectric rods (right inset) plotted around the boundary of the irreducible Brillouin zone (left inset). Various points (black dots) are labelled with letters (**a**–**f**) for future reference.

Problem 3: Projected Bands

The TM band diagram of a square lattice (lattice constant a) of circular dielectric rods is shown in figure 3. In class, we considered linear defects along the Γ -X direction (e.g. removing a row of rods). Here, we will consider linear defects along the Γ -M (**diagonal**) direction, with period $a\sqrt{2}$ along that direction.

- (a) Sketch the projected band diagram along the Γ– M direction: plot the first two bands of the periodic crystal as a function of the component k_d of k along this direction, for the irreducible Brillouin zone in k_d. On your plot, label with letters a–f the points corresponding to those labelled locations in figure 3.
- (b) Sketch (qualitatively) your best guess for the projected band diagram including the modes of a defect where N adjacent diagonal rows of rods are removed (e.g. as shown in figure 4 for N = 3). Sketch what happens as N increases, and in the limit as N → ∞. You may assume that there are no surface states for this crystal termination. [Hint: it might be easier to start with the N → ∞ limit and then sketch

what happens as N decreases.]