MIT OpenCourseWare
http://ocw.mit.edu

18.369 Mathematical Methods in Nanophotonics

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.369 Midterm Exam (Spring 2008)

April 7, 2008

You have two hours. There are three problems, each worth 30 points.

Problem 1: Waveguide Gaps

In figure 1(a) is shown a 2 d hollow metallic waveguide of width L. If we solve for the 2 d TM-polarized (E_{z} only, z invariant) eigensolutions in this geometry, they are of the form:

$$
E_{z}(x, y, t)=\sin \left(\frac{\pi n}{L} y\right) e^{i(k x-\omega t)}
$$

with n a positive integer and eigenfrequencies (bands) $\omega_{n}(k)=\sqrt{k^{2}+(\pi n / L)^{2}}$.
[Useful formulae: given a set of degenerate eigenmodes $\left\{\mathbf{E}_{\ell}\right\}$ with an unperturbed eigenvalue ω, orthonormalized so that $\left\langle\mathbf{E}_{\ell}, \varepsilon \mathbf{E}_{m}\right\rangle=\delta_{\ell, m}$, then you should recall that the first-order perturbations $\Delta \omega^{(1)}$ due to a small $\Delta \varepsilon$ are the eigenvalues of the matrix $A_{\ell m}=$ $-\frac{\omega}{2}\left\langle\mathbf{E}_{\ell}, \Delta \varepsilon \mathbf{E}_{m}\right\rangle$. And the eigenvalues λ of a 2×2 matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ are, of course, the roots of $\lambda^{2}-(a+$ d) $\lambda+(a d-b c)=0$. Some handy trig. identities: $2 \cos ^{2}(u)=1+\cos (2 u), 2 \sin ^{2}(u)=1-\cos (2 u)$, $2 \sin (u) \cos (v)=\sin (u+v)+\sin (u-v)$.]
(a) Now, we will take this waveguide and fill it with a small periodic $($ period $a)$ perturbation $\pm \Delta \varepsilon$ as shown in figure 1 (b): alternating thickness $a / 2$ layers of $\varepsilon=1+\Delta \varepsilon$ and $\varepsilon=1-\Delta \varepsilon$. Sketch the band diagram, assuming $a=L / 2$, by starting with the "folded" bands for $n=1,2,3$ (sketched reasonably quantitatively) and then showing qualitatively (no calculations necessary) how they would change for a small $\Delta \varepsilon \approx 0.1$. (What happens when an $n=1$ and $n=2$ mode cross? What about $n=1$ and $n=3$?)

Figure 1: (a) Schematic of a 2d metal waveguide of width L, which supports modes propagating along the x direction. (b) A perturbation $\pm \Delta \varepsilon$ is introduced via two periodic layers of thickness $a / 2$ filling the waveguide. (c) The perturbation is modified: for half of the thickness ($y \in[0, L / 2]$), the layers are shifted in the x direction by a distance d.
(b) Next, let us further change the perturbation as shown in figure 1(c): for half of the waveguide $(y \in$ $[0, L / 2])$, the perturbation is shifted in the x direction by some distance d. Using first-order perturbation theory, estimate the size of the lowest- ω gap (to first-order in $\Delta \varepsilon$, as a fraction of mid-gap) that opens at $k=\pi / a$ in the $n=1$ band for two cases: $d=0$ and $d=a / 2$. [Hint: you can use symmetry to eliminate or simplify many of the integrals if you choose your x origin and unperturbed modes appropriately.]
(c) What is the space group of the structure in figure 1 (c) (including all rotations, mirrors, translations, etc.) for the two cases $d=0$ and $d=a / 2$?

Problem 2: Symmetry and Stuff

As shown in figure 2, we arrange N identical masses $m>$ 0 onto a circle, uniformly spaced, and attach each to its neighbors by a spring constant $\kappa>0$. The masses are constrained to move along the circle, and the motion of each mass is described by an angle ϕ_{ℓ} as shown, where $\phi_{\ell}=0$ corresponds to the initial position for mass ℓ.

If we assume a time-dependence $e^{-i \omega t}$ as usual, then the frequencies ω satisfy the eigenproblem $\hat{\Theta} \psi=\omega^{2} \psi$, where $\psi=\left(\phi_{1}, \phi_{2}, \cdots, \phi_{N}\right)^{T}$ and $\hat{\Theta}$ is the $N \times N$ realsymmetric positive-semi-definite matrix:

$$
\hat{\Theta}=\frac{\kappa}{m}\left(\begin{array}{cccccc}
2 & -1 & 0 & \cdots & 0 & -1 \\
-1 & 2 & -1 & 0 & \cdots & 0 \\
0 & -1 & 2 & -1 & 0 & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & -1 & 2 & -1 \\
-1 & 0 & \cdots & 0 & -1 & 2
\end{array}\right)
$$

(a) Obviously, the system in figure 2 is invariant under C_{N} rotations, corresponding to a cyclic shift $\phi_{1} \rightarrow$ $\phi_{2}, \phi_{2} \rightarrow \phi_{3}, \ldots, \phi_{N-1} \rightarrow \phi_{N}, \phi_{N} \rightarrow \phi_{1}$. Show explicitly that this $\hat{\Theta}$ commutes with cyclic shifts.
(b) Let $D(n)$ be the representation matrix for a rotation C_{N}^{n} (i.e. a cyclic shift n times). What are the possible irreducible representations for this group (the cyclic group of order N)? [Hint: $D(n) D\left(n^{\prime}\right)=$ $D(?)$.

Figure 2: N identical masses m arranged on a circle, connected with spring constants κ, and allowed to slide freely on the circle, where ϕ_{ℓ} denotes the angular displacement of the ℓ-th mass from its initial position (equally spaced).
(c) Using your answer from (b), solve for the eigenfrequencies ω and the corresponding eigenvectors.
(d) Using your answer from (b), give the projection operator onto the irreducible representations. Also, what does this operator become in the limit $N \rightarrow$ ∞ ?

Figure 3: TM band diagram of a square lattice (lattice constant a) of circular dielectric rods (right inset) plotted around the boundary of the irreducible Brillouin zone (left inset). Various points (black dots) are labelled with letters (a-f) for future reference.

Problem 3: Projected Bands

The TM band diagram of a square lattice (lattice constant a) of circular dielectric rods is shown in figure 3. In class, we considered linear defects along the Γ-X direction (e.g. removing a row of rods). Here, we will consider linear defects along the $\Gamma-\mathrm{M}$ (diagonal) direction, with period $a \sqrt{2}$ along that direction.
(a) Sketch the projected band diagram along the Γ M direction: plot the first two bands of the periodic crystal as a function of the component k_{d} of \mathbf{k} along this direction, for the irreducible Brillouin zone in k_{d}. On your plot, label with letters a-f the points corresponding to those labelled locations in figure 3 .
(b) Sketch (qualitatively) your best guess for the projected band diagram including the modes of a defect where N adjacent diagonal rows of rods are removed (e.g. as shown in figure 4 for $N=3$). Sketch what happens as N increases, and in the limit as $N \rightarrow \infty$. You may assume that there are no surface states for this crystal termination. [Hint: it might be easier to start with the $N \rightarrow \infty$ limit and then sketch

Figure 4: Linear defect in the diagonal $(\Gamma-\mathrm{M})$ direction of a square lattice of rods formed by removing $N=3$ adjacent diagonal rows of rods (removed rods shown as dashed outlines).

what happens as N decreases.]

