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18.325 Problem Set 6 

Problem 1: Brillouin zones and 
band diagrams 

In class, we derived the irreducible Brillouin zone 
for a lattice of cylindrical dielectric rods in air 
with lattice constant a: either a square lattice, 
where the lattice vectors differ by 90°, or a tri- 
angular lattice, where the lattice vectors differ 
by 60" (in class we used 120°, but you can get 
60" just by flipping the sign of one of the lattice 
vectors). 

(a) If 	 you look in the MPB tutorial 
(http://ab-initio.mit .edu/mpb/doc/user- 
tutorial.html), it shows you how to compute 
the TM band diagrams in these two cases. 
Repeat these calculations, but use rods 
with radius r = 0 . 2 ~and E = 8.9 rather 
than the E = 12 in the tutorial, and find 
the size of the first TM gap for both the 
square and triangular lattices. (See also 
the sq-rods.ct1 and tri-rods.ct1 files in the 
/mit/mpb/exarnples directory.) 

(b) Now, 	 consider an intermediate case: a 
lattice of the same circular rods in air 
where the primitive lattice vectors both 
have length a but the angle between them is 
75". Figure out what is the Brillouin zone in 
this case, and the irreducible Brillouin zone, 
and then run MPB to compute the size of 
the first TM gap. 

Be careful about units (see the note on units 
in the MPB tutorial): in MPB, the k points 
are specified in the basis of the reciprocal lat- 
tice vectors. If you work out the Brillouin zone 
in Cartesian coordinates, you can convert to the 
reciprocal basis by dividing by 27r and calling the 
(cartesian->reciprocal (vector3 x y z)) function 
in MPB as described in the reference section of 
the manual. 

Problem 2: Line-defect modes 

For this problem, you should make use of the file 
/mit/mpb/examples/line-defect.ct1 in the MPB 
locker onMlT Sewer which computes the bands of 

a line defect formed by a missing row of rods in 
a triangular lattice of rods. 

(a) Change E to  8.9 to match problem 1. Com-
pute and plot the TM projected band dia- 
gram of this mode. By increasing the super- 
cell size (which folds more and more bands 
in the continuum regions but leaves the de- 
fect mode unchanged), identify the contin- 
uum regions on your plot (the projection of 
the bands of the perfect crystal). 

(b) Sketch the Brillouin zone of the triangular 
lattice of rods, and show how it is projected 
for the line defect. Careful: for the line de- 
fect, we have to project this onto the F -K 
direction (the nearest-neighbor direction), 
but the edge of the new Id  Brillouin zone is 
not K. Where is the edge of the projected 
Id Brillouin zone? 

(c) Consider the TM bands for the triangu- 
lar lattice that you computed in problem 
1. Project each one of these bands onto 
the irreducible Brillouin zone for the line- 
defect waveguide, and superimpose its pro- 
jected plot onto your the projected band di- 
agram you computed in (a). For each band 
of the original band diagram, you should 
have more than one projected band, corre- 
sponding to all rotations/reflections of the 
original band (e.g. there are six equivalent 
rotations of the r -K direction, although 
some of these project onto the -k axis and 
can be omitted.) 

Problem 3: Galerkin methods 

Consider the Id  Schrodinger equation for an 
eigenvalue (energy) E :  

with boundary conditions $(O) = $ ( L )  = 0, 
for some smooth potential V(x). Now suppose 
we want to express this problem on a computer 
via a discrete grid of N - 1points with spacing 
A = LIN, using a basis of "tent" functions t(z) 
centered at each grid point: 
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with some unknown coefficients p,, where 

t(x) = 0 	 otherwise 

Thus, qN(nA) =p, (i.e. the p, are the values at 
the grid points) and QN is linearly interpolated 
in between grid points. Note that the boundary 
conditions are automatically satisfied. 

(a) Using the Galerkin approach, express the 
Schrodinger equation above as an (N-1) x 
( N  - 1) matrix eigenvalue problem A p  = 

EBp in terms of Hermitian matrices A and 

(b) Show that the d2/dx2 operator just turned 
into a discrete-grid (finite-difference) ver- 
sion of the 2nd derivative. (Hint: in evalu- 
ating this integral in the Galerkin approach, 
it is probably easier if you integrate by parts 
to avoid taking the derivative of a discontin- 
uous function.) 

(c) For 	V ( x ) = 0, recall that we solved this 
equation in class in the first week: the so- 
lutions are Q(x) = s in (m~x/L) ,with eigen- 
values Ek = ( r n ~ / L ) ~  = 1,2,3,.. ..for m 
Compute your matrices A and B in this 
case for L = 1, V(x) = 0, and N = 10, 
and plug them into Matlab to get the cor- 
responding 9 eigenvalues (with the eig(A,B) 
command), and give the fractional error in 
each eigenvalue compared to the analytical 
result. Which is most accurate, and why? 

Problem 4: Meep! 

For this problem, you will use the Meep finite- 
difference time-domain code, which is installed 
on the MIT Server Linux/Intel machines in the mpb 
locker (add mpb); see also the Meep manual at 
http://ab-initio.mit.edu/meep.As your starting 
point, you should use the rod-transmission.ct1 
example file, which is posted on the course web 
page, which computes the transmission spec-
trum of TM planewave source in the x direction 
through nx layers of the square-lattice rod crys- 
tal from problem 1. 

(a) Compute the transmission spectrum 	as a 
function of nx, for nx=l, 2, 3, 4, 5,  6, and 

plot them (on a single plot). The trans- 
mission spectrum should be normalized by 
dividing by the transmission for nx=O (no 
holes). Relate the features of this transmis- 
sion spectrum to the band diagram of prob- 
lem 1. 

(b) Compute the TE transmission spectrum for 
nx=lO layers, and relate it to  the TE band 
diagram (which you can compute yourself 
with MPB, or you can look up from the 
band diagram in the handout). Careful: you 
need to change three places in the control 
file. (What happens to the symmetry?) 

(c) Try making the pulse frequency spectrum 
very broad, e.g. df=2 (computing the flux 
in a correspondingly wide frequency range), 
and plotting the TM transmission spectrum; 
in the original range from (a), does the new 
transmission spectrum match what you had 
before? 

(d) Predict analytically at what frequency wo 
you should start to  see additional diffracted 
orders in the reflected wave (i.e. reflected 
waves at  angles in addition to the normal 
0' reflection). Now, modify the simulation 
to use a TM continuous-wave (CW) source 
and output E, at the end, as in the Meep tu- 
torial, and show that there is a qualitative 
change in the reflected field pattern if you 
put in a frequency just below wo versus a fre- 
quency just above wo. If you look just below 
wo, then you will have to increase the "pad" 
parameter in order to see an undisturbed 
0' reflection pattern far from the crystal- 
why? 
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