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18.325 Problem Set 1 

Problem 1: Adjoints and operators 

(a) We defined the adjoint 	t of states and opera- 
tors by: (H11H2) = 1 ~ 1 ) ~IH2) and (Hll0lH2) = 

( 0 t  I HI))^ I Hz). Show that for a finite-
dimensional Hilbert space, where IH) is a col- 
umn vector h, (n = I , . . .  ,d), 0 is a square 
d x d matrix, and ( ~ ( ' 1I H ( ~ ) )  is the ordinary 
conjugated dot product Enhi1)* hL2), the above 
adjoint definition corresponds to the conjugate- 
transpose for both matrices and vectors. 

(b) Show that 	if 0 is simply a number o, then 
0+= o*. (This is not the same as the previ- 
ous question, since 0 here can act on infinite- 
dimensional (continuous) spaces.) 

(c) If a linear operator 0 satisfies 0 t  = 0-', then 
the operator is called unitary. Show that a uni- 
tary operator preserves inner products (that is, 
if we apply 0 to every element of a Hilbert space, 
then their inner products with one another are 
unchanged). Show that the eigenvalues u of a 
unitary operator have unit magnitude (lul = 1) 
and that its eigenvectors can be chosen to be 
orthogonal to one another. 

(d) For a non-singular operator 0 (i.e. 0-l exists), 
show that (8-')t = (0t)-'. (Thus, if 0 is Her- 
mitian then 0 - I  is also Hermitian.) 

Problem 2: Completeness 

(a) Prove 	 that the eigenvectors In) of a finite-
dimensional Hermitian operator 0 (a d x d 
matrix) are complete: that is, that any d-
dimensional vector can be expanded as a sum 
Enen In) in the eigenvectors with some coeffi- 
cients en. It is sufficient to show that there are 
d linearly independent eigenvectors In) : 

(i) Show that every matrix 
0 has at least one nonzero eigenvector 11) 

(. . . use the fact that every polynomial with 
nonzero degree has at least one (possibly 
complex) root). 

(ii) Show that the space of Vl = {Iv) 1 (v 11) = 
0) orthogonal to 11) is preserved (trans- 
formed into itself or a subset of itself) by 
0. From this, show that we can form a 
(d - 1) x (d - 1) Hermitian matrix whose 
eigenvectors (if any) give (via a similar-
ity transformation) the remaining (if any) 
eigenvectors of 0. 

(iii) By induction, form an orthonormal basis of 
d eigenvectors for the d-dimensional space. 

(b) Suppose that 	we have an infinite-dimensional 
Hermitian operator 0 that can be simulated on 
a computer (with arbitrary, but finite, memory 
and time): its solutions can be approximated to 
arbitrary accuracy by a finite-dimensional Her- 
mitian operator (e.g. 0 discretized on a finite 
grid). Argue that the infinite-dimensional eigen- 
vectors form a complete basis for anything that 
we care about; can you give an example of a sense 
in which they do not form a complete basis?' 

(c) Completeness is not automatic for eigenvectors 
in general. Give an example of a non-singular 
non-Hemitian operator whose eigenvectors are 
not complete. (A 2 x 2 matrix is fine. This case 
is also called "defective.") 

Problem 3: Maxwell eigenproblems 

(a) 	In class, we eliminated E from Maxwell's equa- 
tions to get an eigenproblem in H alone, of the 
form 8 1 H )  = $ I H) .  Show that if you in- 
stead eliminate H ,  you cannot get a Hermitian 
eigenproblem in E except for the trivial case 
E = constant. Instead, show that you get a 
generalized Hermitian eigenproblem of the form 
A I E) = !$B I E), where both A and B are Her- 
mitian operators. 

l ~ o ra more precise discussion of the completeness of conti- 
nous Hermitian operators, see e.g. Courant & Hilbert, Methods 
of Mathematical Physics vol. 1 .  



(b) For 	 any generalized Hermitian eigenproblem 
where B is positive definite (i.e. (EIB~E)> 0 
for all I E) # 02), show that the eigenvalues are 
real and that different eigenvectors IEl)and I E2) 
satisfy a modified kind of orthogonality. Show 
that B for the E eigenproblem above was indeed 
positive definite. 

(c) Show that 	both the IE) and IH) formulations 
lead to generalized Hermitian eigenproblems 
with real w if we allow magnetic materials 
y(x) # 1 (but require y real, positive, and in- 
dependent of H or w). 

(d) y and E are only ordinary numbers for isotropic 
media. More generally, they are 3 x 3 matri-
ces (technically, rank 2 tensors)-thus, in an 
anisotropic medium, by putting an applied field 
in one direction, you can get dipole moment in 
different direction in the material. Show what 
conditions these matrices must satisfy for us to 
still obtain a generalized Hermitian eigenprob- 
lem in E (or H )  with real eigen-frequency w. 

Problem 4: Projection operators 

The representation-theory handout gives a formula 
for the projection operator from a state onto its com- 
ponent that transforms as a particular representa- 
tion. Prove the correctness of this formula (using the 
Great Orthogonality Theorem). 

Problem 5: Symmetries of a field in a 
metal box 

In class, we considered a two-dimensional (xy) prob- 
lem of light in an L x L square of air ( E  = 1) 
surrounded by perfectly conducting walls (in which 
E = 0). We solved the case of H = HZ(x,y)2 and 
saw solutions corresponding to three different repre- 
sentations of the symmetry group (CdV). 

2 ~ e r e ,when we say ( E )# 0 we mean it in the sense of 
generalized functions; loosely, we ignore isolated points where 
E is nonzero, as long as such points have zero integral, since 
such isolated values are not physically observable. See e.g. 
Gelfand and Shilov, Generalized Functions. 

(a) Solve for the eigenmodes of the other polariza- 
tion: E = Ez(x, y)z (you will need the E eigen-
problem from above), with the boundary condi- 
tion that Ez = 0 at the metal walls. 

(i) Sketch and classify the solutions according 
to the representations of C4V enumerated 
in class. 

(b) Consider the solutions in a triangular box with 
side L. Don't try to solve this analytically; in- 
stead, use symmetry to sketch out what the pos- 
sible solutions will look like for both Ez and Hz 
polarizations. 

(i) List the symmetry operations in the space 
group (choose the origin at the center of 
the triangle so that the space group is sym- 
morphic), and break them into conjugacy 
classes. (This group is traditionally called 
C3V). Verify that the group is closed un- 
der composition (i.e. that the composition 
of two operations always gives another op- 
eration in the group) by giving the "mul- 
tiplication table" of the group (whose rows 
and columns are group members and whose 
entries give their composition). 

(ii) Find the character table of C3V, using the 
rules from the represent at ion- t heory hand- 
out. 

(iii) Give unitary representation matrices D for 
each irreducible representation of 

(iv) Sketch possible w 	# 0 Ez and Hz solu- 
tions that would transform as these rep- 
resent at ions. What represent ation should 
the lowest-w mode (excluding w = 0) of 
each polarization correspond to? If there 
are any (non-accident al) degenerate modes, 
show how given one of the modes we can get 
the other orthogonal eigenfunction(s) (e.g. 
in the square case we could get one from 
the 90" rotation of the other for a degener-
ate pair). 




