Lecture 12: Black-Scholes-Merton and Beyond

Scribe: Sergiy Sidenko
Department of Mathematics, MIT

March 15, 2005

Dynamic Hedging

In the previous lecture we considered how to hedge risk for a single time period τ given the probability distribution of price, the payoff function $y(x)$, a current price x_{0} and an interest rate r. All we need to do is to find the best linear fit

$$
\begin{equation*}
\widetilde{w}_{0}^{*}=\widetilde{u}_{0}^{*}+\phi^{*} \widetilde{x}_{0}, \tag{1}
\end{equation*}
$$

for the payoff function $y(x)=w(x, t+\tau)$ (here $\widetilde{x}_{0}=x_{0} e^{r \tau}, \widetilde{w}_{0}=w_{0} e^{r \tau}$, and t is the current moment of time).

From now on, we assume that r is risk-free (which actually is not the case). Now we are going to repeat this process for N periods of time. In particular, we are interested in those cases when we can eliminate any risk and determine $w(x, t)$ uniquely. Basically, there are only two suitable cases.

The first one is the so-called Binomial Model (or Binomial Tree). Here at each step we have only two possible outcomes of x. Thus, linear fit (1) can be found in a unique way because there is only one line passing trough two points.

The second one is the Black-Scholes-Merton case. It is the continuum limit with the time step τ tending to zero, and, thus, $\delta x \rightarrow 0$. Obviously, here our best linear fit degenerates into a tangent to the payoff function which is unique (provided we have a nice payoff function). There are some concerns when we let $\tau \rightarrow 0$. For instance, in this case transaction cost grows to infinity. Another shortcoming is that the underlying asset takes independent steps after some finite correlation time; thus, we cannot assume that our process is Markovian.

Binomial Tree

Let x_{+}and x_{-}denote two possible outcomes for the current price x. Similarly, let w_{+}and w_{-}be the corresponding payoffs. Then the equation for the fitting line is:

$$
\begin{equation*}
\widetilde{w}_{0}=\frac{\left(\widetilde{x}_{0}-x_{-}\right) w_{+}+\left(x_{+}-\widetilde{x}_{0}\right) w_{-}}{x_{+}-x_{-}} \tag{2}
\end{equation*}
$$

which implies that the hedge ratio is:

$$
\phi(t)=\frac{w_{+}-w_{-}}{x_{+}-x_{-}} .
$$

(Here again $\widetilde{x}_{0}=x_{0} e^{r \tau}$ and $\widetilde{w}_{0}=w_{0} e^{r \tau}$.)
In the following sections we will solve the equation (2) backwards in time.

Figure 1: Binomial Tree

Continuum Limit

Normal (Additive) Stochastic Process for x_{t}

Let us consider the process where $x_{ \pm}=x_{0} \pm a$. Assuming that $r=0$, we can rewrite the equation (2) as follows:

$$
\begin{equation*}
w(x, t)=\frac{1}{2}(w(x+a, t+\tau)+w(x-a, t+\tau)) . \tag{3}
\end{equation*}
$$

It is important to note that although the probabilities of $x_{ \pm}$could be different, we would still have the same equation (3).

Now we can consider the process as a Bernoulli random walk with probabilities $1 / 2$ in backward time. Transforming (3), we get:

$$
\begin{aligned}
& w(x, t)-w(x, t+\tau)=\frac{1}{2}(w(x+a, t+\tau)-2 w(x, t+\tau)+w(x-a, t+\tau)) \\
&\left(w(x, t+\tau)-\tau \frac{\partial w}{\partial t}+\ldots\right)-w(x, t+\tau)= \frac{1}{2}\left(w(x, t+\tau)+a \frac{\partial w}{\partial x}+\frac{a}{2} \frac{\partial^{2} w}{\partial x^{2}}+\ldots\right. \\
&\left.-2 w(x, t+\tau)+w(x, t+\tau)-a \frac{\partial w}{\partial x}+\frac{a}{2} \frac{\partial^{2} w}{\partial x^{2}}+\ldots\right) .
\end{aligned}
$$

Here all partial derivatives are evaluated at the point $(x, t+\tau)$.
Now, omitting all higher-order terms (assuming that $\tau \rightarrow 0$ and $a \rightarrow 0$), we obtain the diffusion equation:

$$
\begin{equation*}
-\frac{\partial w}{\partial t}=D \frac{\partial^{2} w}{\partial x^{2}}, \tag{4}
\end{equation*}
$$

where

$$
D=\frac{a^{2}}{2 \tau}
$$

is a diffusion coefficient.
Thus, we see that the option price 'diffuses' in backward time from the known payoff at $t=T$.

Lognormal (Multiplicative) Process for x_{t}

Here we will consider the binomial model with $x_{ \pm}=x e^{\mu \pm \sigma \sqrt{\tau}}$. Expanding these outcomes we have:

$$
\begin{aligned}
x_{ \pm} & =x\left(1+\mu \tau \pm \sigma \sqrt{\tau}+\frac{\sigma^{2} \tau}{2}+\ldots\right) \\
& =x(1+\bar{\mu} \tau \pm \sigma \sqrt{\tau}+\ldots)
\end{aligned}
$$

where $\bar{\mu}=\mu+\frac{\sigma^{2}}{2}$ is a noise induced drift.
Then the relative change of x is:

$$
\frac{\Delta x}{x}=\Delta(\log x)=\bar{\mu} \tau \pm \sigma \sqrt{\tau} .
$$

The quantities \widetilde{w}_{0} and \widetilde{x}_{0} can be represented as follows:

$$
\begin{aligned}
\widetilde{w}_{0} & =e^{r \tau} w(x, t)=(1+r \tau) w(x, t), \\
\widetilde{x}_{0} & =e^{r \tau} x_{0}=(1+r \tau) x_{0} .
\end{aligned}
$$

Now we apply the binomial model for each time step τ :

$$
\left(x_{+}-x_{-}\right) \widetilde{w}_{0}=\left(\widetilde{x}_{0}-x_{-}\right) w_{+}+\left(x_{+}-\widetilde{x}_{0}\right) w_{-}
$$

Substituting $\widetilde{w}_{0}, \widetilde{x}_{0}$ and $x_{ \pm}$:

$$
(2 \sigma \sqrt{\tau} x)(1+r \tau) w(x, t)=(r-\bar{\mu}) \tau\left(w_{+}-w_{-}\right)+\sigma \sqrt{\tau} x\left(w_{+}+w_{-}\right),
$$

where

$$
w_{ \pm}=w\left(x_{ \pm}, t+\tau\right)=w(x, t+\tau)+\left.(\bar{\mu} \tau \pm \sigma \sqrt{\tau}) x \frac{\partial w}{\partial x}\right|_{(x, t+\tau)}+\left.\frac{1}{2} \sigma^{2} \tau x^{2} \frac{\partial^{2} w}{\partial x^{2}}\right|_{(x, t+\tau)}+\ldots
$$

Thus,

$$
w_{+}-w_{-}=\left.2 \sigma \sqrt{\tau} x \frac{\partial w}{\partial x}\right|_{(x, t+\tau)}+\ldots
$$

and

$$
w_{+}+w_{-}=2 w(x, t+\tau)+\left.2 \bar{\mu} \tau x \frac{\partial w}{\partial x}\right|_{(x, t+\tau)}+\left.\sigma^{2} \tau x^{2} \frac{\partial^{2} w}{\partial x^{2}}\right|_{(x, t+\tau)}+\ldots
$$

This gives us:

$$
(1+r \tau) w(x, t)=\left.(r-\bar{\mu}) \tau x \frac{\partial w}{\partial x}\right|_{(x, t+\tau)}+w(x, t+\tau)+\left.\bar{\mu} \tau x \frac{\partial w}{\partial x}\right|_{(x, t+\tau)}+\left.\frac{\sigma^{2}}{2} \tau x^{2} \frac{\partial^{2} w}{\partial x^{2}}\right|_{(x, t+\tau)},
$$

and the Black-Scholes miracle occurs: the drift (or expected return in x_{t}) drops out. However, $\bar{\mu}$ is present in higher-order terms.

Now, simplifying the obtained equation, we get:

$$
\frac{w(x, t)-w(x, t+\tau)}{\tau}+r w(x, t)=\left.r x \frac{\partial w}{\partial x}\right|_{(x, t+\tau)}+\left.\frac{\sigma^{2} x^{2}}{2} \frac{\partial^{2} w}{\partial x^{2}}\right|_{(x, t+\tau)}
$$

Taking the limit with $\tau \rightarrow 0$, we obtain the Black-Scholes equation:

$$
\begin{equation*}
\frac{\partial w}{\partial t}+r x \frac{\partial w}{\partial x}+\frac{\sigma^{2}}{2} x^{2} \frac{\partial^{2} w}{\partial x^{2}}=r w \tag{5}
\end{equation*}
$$

Recall that we are assuming that $w(x, t)$ is independent of measure of risk expected return μ and r is a risk-free rate.

Risk-Neutral Valuation

Let us eliminate dimensions from the Black-Scholes equation. Namely, let us introduce the following variables:

$$
\begin{aligned}
\bar{t} & =\frac{T-t}{T}, \\
\bar{x} & =\log \frac{x}{k}, \\
\bar{w} & =e^{r(T-t)} w, \\
\bar{r} & =r T \\
\bar{\sigma}^{2} & =\sigma^{2} T
\end{aligned}
$$

Then, the partial derivatives have to be:

$$
\begin{aligned}
\frac{\partial}{\partial \bar{x}} & =x \frac{\partial}{\partial x} \\
\frac{\partial}{\partial \bar{t}} & =-\frac{1}{T} \frac{\partial}{\partial t}
\end{aligned}
$$

Now, equation (5) becomes:

$$
\begin{equation*}
\frac{\partial \bar{w}}{\partial \bar{t}}=\left(\bar{r}-\frac{\bar{\sigma}^{2}}{2}\right) \frac{\partial \bar{w}}{\partial \bar{x}}+\frac{\bar{\sigma}^{2}}{2} \frac{\partial^{2} \bar{w}}{\partial \bar{x}^{2}} . \tag{6}
\end{equation*}
$$

The Green function (solution for the initial condition $\bar{w}(\bar{x}, 0)=\delta(\bar{x}))$ for (6) is:

$$
\begin{equation*}
\bar{G}(\bar{x}, \bar{t})=\frac{1}{\sqrt{2 \pi \bar{\sigma}^{2} \bar{t}}} \exp \left[-\frac{\left(\bar{x}+\bar{t}\left(\bar{r}-\bar{\sigma}^{2} / 2\right)\right)^{2}}{2 \bar{\sigma}^{2} \bar{t}}\right] \tag{7}
\end{equation*}
$$

which is a normal distribution with mean $\bar{t}\left(\bar{r}-\bar{\sigma}^{2} / 2\right)$ and variance $\bar{\sigma}^{2} \bar{t}$. Having this, we can write a solution with the arbitrary initial condition $\bar{y}(\bar{x})$ as a convolution:

$$
\bar{w}(\bar{x}, \bar{t})=(\bar{G} \star \bar{y})(\bar{x}, \bar{t}),
$$

which can be simplified as follows:

$$
\bar{w}(\bar{x}, \bar{t})=\langle\bar{y}(\bar{x}, \bar{t})\rangle_{\bar{G}} .
$$

Putting the dimensions back, we have the Green function for the Black-Scholes equation (5)

$$
G(x, t)=e^{r(t-T)} L(x, t),
$$

where $L(x, t)$ is a lognormal density with expected return r and volatility σ^{2} which solves the following SDE for a lognormal process from t to T :

$$
d x=r x d t+\sigma x d z
$$

(Recall that in lecture 10 we showed that the mean of such a lognormal random variable with expected rate of return m and volatility σ has expected value $x_{o} e^{\left(m+\sigma^{2} / 2\right)(T-t)}$, and here $m=$ $r-\sigma^{2} / 2$.) In terms of the Green function, the general solution can be written as an expectation of the payoff with respect to the lognormal process

$$
w(x, t)=e^{r(t-T)}\langle y(x)\rangle .
$$

This appears to be the same as Bachelier's fair price, equal to the expected payoff (discounted at the risk-free interest rate), except for one subtle difference: The mean rate of return μ in the lognormal process for the underlying asset has been replaced by r, the risk-free rate! This is again the "Black-Scholes mirable" caused by the hedging procedure, neglected by Bachelier, which removes any dependence on the mean return relative to the risk-free rate. Rather than solving the Black-Scholes PDE, therefore, we can instead applying the simple Bachelier "fair-game" principle, replacing μ with r. This procedure of risk neutral valuation is a powerful and widely used tool in options pricing and hedging.

In reality, however, a perfect hedge is not possible, and risk neutral valuation is only a first approximation. The presence of residual risk can be treated by various methods such as the Bouchaud-Sornette theory introduced in the previous lecture. In the continuum limit, this leads to perturbations of the Black-Scholes equation and corrections to risk-neutal valuation.

For more details, see the solutions to Problem Set 3 and the final project of Ken Gosier from 2001, Derivatives Pricing and Hedging with Residual Risk, both available online.

