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A common theme of the class has been that the statistics of single walker are often very different 
from those of an ensemble of walkers. On the first homework, we considered a good example of 
this, whereby we performed simulations of symmetric Bernoulli walkers on the integers, starting at 
x = 0. We defined αN to the proportion of steps from 1 to N for an individual walker which satisfy 
x > 0. We showed that in the limit as N →∞, αN has PDF 

1 
p(α) = � for 0 < α < 1. (1) 

π α(1 − α) 

This is referred to as the arcsine distribution, since the corresponding CDF is C(α) = 1
2 +sin−1 2α

π
−1 . 

Intuitively, we would expect that αN would be most likely to to be 1/2, and we certainly know that 
for an ensemble of walkers, the concentration of them on the left will match the concentration on 
the right. However, as shown in figure 1, we see that that opposite is true: 1/2 is the least likely 
fraction, and it is most probable that the walker spends all the time on one side of the origin. 

It is possible to make use of Laplace transforms and continuum methods to show this, but in 
this lecture we provide a rigorous proof of the result using discrete methods. Much of the proof 
rests on counting possible paths of Bernoulli random walkers, and we begin by considering several 
different path counting arguments that will be useful in the proof. 

Also considered on the first homework was the distribution of αN for the case of the Cauchy 
walk, which we found to exactly follow the above form as well. While we will not consider it here, 
it is worth noting that the arcsine distribution holds for any symmetric PDF for the steps, and it 
is possible to prove this by arguments involving the rescaling of the time variable. 

The Reflection Principle and path counting 

Consider a symmetric Bernoulli walk on the integers. We think of a walker as tracing out a path 
on the integers in the (x, t) plane. Let N(x, t) be the number of paths to the point x that take t 
steps. We know that 

t! = t+
t 
x for x + t even 

N(x, t) = ( t+
2 
x )!( t−

2 
x )! 2 

0 for x + t odd. 

Now introduce the quantity Xy(x, t) to be the number of paths from (0, 0) to (x, t) which cross a 
point y > x. A typical path satisfying this property is shown in figure 2. From the diagram, we see 
that it is possible to construct a corresponding path from (0, 0) to (2y − x, t) simply by reflecting 
up the section of the path from the last crossing of y. Conversely, given any path from (0, 0) to 
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Figure 1: The arcsine distribution, as given by equation 1. 

(2y − x, t) we can find construct a path from (0, 0) to (x, t) that crosses y, by reflecting down the 
section of path from the last crossing of y. This establishes a bijection, and hence we see that 

Xy(x, t) = N(2y − x, t). 

Now let F (x, t) be the number of paths from (0, 0) to (x, t) that make their first passage to x at 
time t. Any path which satisfies this property must have gone through the point (x − 1, t − 1), and 
make a final positive step to (x, t). To find F (x, t), we are therefore interested in enumerating all 
possible paths from (0, 0) to (x − 1, t − 1) that do not cross x. We see that this is precisely 

F (x, t) = N(x − 1, t − 1) − Xx(x − 1, t − 1) 

which can be simplified to 

F (x, t) = N(x − 1, t − 1) − N(x + 1, t − 1) 
(t − 1)! (t − 1)!

= � � � � � � � � 
t+xt+x−2 ! t−x ! 

− 
! t−x−2 !2 2 2 2 

x t! 
t+x t−xt 

× 
! !2 2 

x 
= N(x, t). (2)

t 

From this, it is possible to calculate the number of paths f(t) that first return to the origin at time 
t. Since a path can only return in an even number of steps, we assume t is even. Consider those 
paths which make their first step to (−1, 1). Any of these paths that return to the origin at time t 
can be thought of as taking a first passage path of length t − 1 to x = 1 after this initial step. By 
symmetry, we know that there are an equal number of paths which initially go to (1, 1) and then 
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Figure 2: The reflection principle: the blue Figure 3: Any returning walk of length t has 
path to (x, t) which crosses y > x can be made a first return at a time k. It can be viewed a 
into a path to (2y −x, t) by reflecting upwards first return path of length k (shown in blue) 
the section from the last crossing of y, shown followed by returning path of length n − k 
in purple. (shown in purple). 

return at time t. We therefore have 

f(t) = 

= 

2F (1, t − 1) 
2 

t − 1 
× 

(t − 1)!� 
t−1−1 

2 

� 
! 
� 

t−1+1 
2 

� 
! 

= 
2 

t − 1 
× 

(t − 1)!� 
t 
2 − 1 

� 
! 
� 

t 
2 

� 
! 

2t t! 
= 

2t(t − 1) 
× �� 

t 
2 

� 
! 
�2 

= 
N(0, t) 
(t − 1) 

. 

Thus the number of paths that first return at time t is 1/(t − 1) of those which return at time t. Let 
the number that return at time t be R(t). Any such path must have a unique first return to x = 0, 
at time k say, and as such, it can be viewed as a first return segment of length k coupled with a 
return path of length t − k, as shown in figure 3. The number of such paths is just the product 
f(k)R(t − k). Since every path returning to the origin at t must have a first return, we know that 

t

R(t) = f(k)R(t − k). (3) 
k=2,4,... 

Now consider W (t) to be the number of paths which never return to the origin by time t. By 
symmetry, we know that this will be exactly twice those paths which end up in the region x > 0 
and never return to the origin. Any such path will end up at some point x. Again, we proceed 
by making a correspondence. Consider such a path which goes to (x, t). It is possible to construct 
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another path to (x, t) by rotating this path by 180◦ around the point (x/2, t/2), as shown in figure 
4. If the original path was non-returning, we know that the new path must be a first passage path 
to (x, t). By symmetry, there are an equal number of non-returning paths in the region x < 0, and 
hence, by enumerating over all possible final positions x, we see that 

t� 
W (t) = 2 F (x, t) 

x=2,4,... 

t� 
= 2 [N(x − 1, t − 1) − N(x + 1, t − 1)] 

x=2,4,... 

= 

= 

= 

2N(1, t − 1) − 0 
2(t − 1)!� 

t 
2 − 1 

� 
! 
� 

t 
2 

� 
! 

t! � � � � 
t 
2 ! t 

2 ! 
= N(0, t) 

where we have used the fact that the terms in the summation cancel in pairs, leaving only a 
contribution from the initial and final terms. Interestingly, we see that the number of paths which 
return at time t is exactly the same as those which never return by time t. 

A related result that will be useful in the next section is to find the number of paths of even 
length t which lie wholly in the domain x ≥ 0. This can be written as those paths which satisfy 

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, . . . , xt−1 ≥ 0, xt ≥ 0 

where xi denotes the position of the ith step. Since t is even, we know that if xt−1 ≥ 0, then xt ≥ 0 
automatically. Thus our condition is equivalent to requiring 

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, . . . , xt−1 ≥ 0. 

We see that for any path of this form, there is a corresponding non-returning path in the domain 
x > 0, formed by first taking a step to (1, 1) and following it with a path of length t − 1 satisfying 
the above constraints, as shown in figure 5. Thus we have shown that 

(Number of paths satisfying x1 ≥ 0, x2 ≥ 0, . . . , xt−1 ≥ 0) = 
W (t) 

.
2 

For each path contributing to the left hand side of this expression, we can construct two paths of 
length t which remain in the region x ≥ 0, since the final step can be either positive or negative. 
Hence 

(Number of paths satisfying x1 ≥ 0, x2 ≥ 0, . . . , xt ≥ 0) = W (t). (4) 

Deriving the arcsine distribution 

We are now in a position where we can derive the arcsine distribution for the discrete case. We 
want to consider the number of paths P (k, n) which spend k units in the positive domain, and n − k 
units in the negative domain, where n and k are once again even. 

2 
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Figure 4: The blue line is non-returning walk 
to (x, t). By rotating the walk by 180◦ around 
the point (x/2, t/2) we can create a first pas
sage walk to (x, t), shown in purple. 
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Figure 5: A positive non-returning walk of 
length t can be thought of as a single step to 
(1, 1) (shown in blue) followed by a positive 
walk of length t − 1 (shown in purple). 

Before proceeding, we must however be careful to correctly define how we deal with points 
of the walk which cross x = 0. For points at x = 0, it is unclear whether these should count 
for the positive domain or the negative domain, and this has the potential to cause problems for 
our counting process. Rather than counting random walk positions, it is therefore mathematically 
convenient to count whether the random walk line segments in the (x, t) plane lie in the domain 
x > 0 or x < 0, the position of a line segment is always well-defined. We can also interpret this as 
a “tie-breaker” condition: a walker at x = 0 counts as positive if its previous step was positive, and 
negative if its previous step was negative. 

Using this rigorous definition of P (k, n), we can carry out an inductive proof to show that 

P (k, n) = R(k)R(n − k). 

We know that 0 ≤ k ≤ n, and we wish to carry out induction on n. Suppose that n = k. Then we 
see immediately by making use of equation 4 that 

P (k, k) = R(k) 
= R(k)R(0). 

(By symmetry, we also know that P (0, k) = R(0)R(k).) Now consider a general pair (k, n), and 
assume that the result is true for all cases where the total path length is less than n. Consider any 
path. There must be a first return at some even r with r < n. There are two cases: 

1 
•	 These first r vertices are spent on the positive side, and the remaining section is n−r long and 

has exactly k − r sides above the axis. The number of such paths will be f(r)P (k − r, n − r).
2

1 
•	 These first r vertices are spent on the negative side, and the remaining section is n − r long 

and has exactly k sides above the axis. The number of such paths will be 2f(r)P (k, n − r).
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Summing up all these possibilities, we see that 
k n−k1 � 1 � 

P (k, n) = 
2 

f(r)P (k − r, n − r) + 
2 

f(r)P (k, n − r). 
r=2,4,... r=2,4,... 

For every case on the right hand side, the total path length is less than n, and we can therefore 
assume the result is true for these cases by our inductive hypothesis. This gives 

k n−k1 � 1 � 
P (k, n) = 

2 
f(r)R(k − r)R(n − k) + 

2 
f(r)R(k)R(n − r − k) 

r=2,4,... r=2,4,... 

1 
k 1 

n−k

=
2
R(n − k) f(r)R(k − r) + 

2
R(k) f(r)R(n − k − r) 

r=2,4,... r=2,4,... 

1 1 
=

2
R(n − k)R(k) + 

2
R(k)R(n − k) 

= R(k)R(n − k) 

where we have made use of equation 3 to evaluate the sum. We have therefore proved the inductive 
step and hence P (k, n) = R(k)R(n − k) for all permissible values of k and n. 

3 Obtaining a continuum result as n gets large 

To find a PDF of our original αN , we consider the limit as n and k become large. By making use 
of Stirling’s formula, which states that k! ∼

√
2πkkke−k, we have 

k! 
√

2πkkke−k 

R(k) = ��
k 
2 

� 
! 
�2 ∼ �√

πk 
�

k 
2 

�k/2 
e−k/2 

�2 

√
2πkkke−k 

∼ 
kπkk2−ke−k 

2k+ 1 
2 

.∼ √
πk 

Using this result, we know that the probability of a path of length n having k line segments positive 
is given asymptotically by 

1 
2 2n−k+ 1 

2 2
R(k)R(n − k)

=


2k+

=

2n π k(n − k)2n π k(n − k) 

Thus, in terms of αN for a long path, we see 

P(α < αN < α + dα) = P(Nα < k < N(α + dα)) 

1 
� N(α+dα) 2 dk ∼ 

2 Nα π 
� 

k(n − k) 
1 2 ∼ 
2

[N(α + dα) − Nα] × 
π 
� 

Nα(N − Nα) 
1 ∼ 

π 
� 

α(1 − α) 

which is the arcsine distribution. 
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4 Relationship to continuum approach 

In the following lectures, we will be considering continuum first passage methods, and it is interesting 
to see how the above results relate to this. Suppose that our Bernoulli walker is stepping on a lattice 
of size δ and making a step at time intervals τ . We can introduce a probability density ρ(x, t), 
and make the correspondence ρ(Xδ, Tτ) to 2−T N(X, T ). If the lattice spacings satisfy a relation 
2Dτ = δ2 for some constant D, then in the limit δ 0 we find that ρ satisfies a diffusion equation → 

ρt = Dρxx 

and for a walker initially located at x = 0, such that ρ(x, 0) = δ(x), we have 

2 x 
e− 

4Dt 

ρ(x, t) = √
4πDt 

Recall from equation 2 that the number of first passage paths to some location x is given by 
F (x, t) = xN(x, t)/t. In the continuum case, we have an analogous result that first passage time to 
a location x is given by 

2 x 
xe− 

4Dt 

Fx(t) = .√
4πDt3 

This is referred to as the Smirnov density. We see that for large t, Fx(t) ∼ t−3/2, and hence our 
expected waiting time is infinite. 

5 The image method 

The Smirnov density can also be derived using a continuum approach. Consider a walker at x0 at 
t = 0, and as above, let its PDF be given by ρ(x, t). If the walker stays in the region x > 0, then it 
just diffuses normally, according to ρt = Dρxx. However, if it reaches the point x = 0, it achieves 
first passage and is removed – this can be modeled by a boundary condition ρ(0, t) = 0 for all t. 

Borrowing ideas from electrostatics, we propose that this problem has solution 

1
 (x−x0)2 (x+x0)2 

4Dt ρ(x, t) =
 e− − e−√
4πDt


4Dt . 

The first term would be our solution for the case of an infinite domain with no boundaries. However, 
to correctly handle the boundary, an equal and opposite “image” has been introduced at x = −x0. 
This term immediately satisfies the diffusion equation. We see that at x = 0, ρ is zero, and our 
boundary condition is also satisfied. We can now use this solution to find out how fast the walkers 
achieve first passage, by looking at the probability current at x = 0: 

∂ρ 
Fx0 (t) = D 

∂t x=0 
2 x0x0 

e−= √
4πDt3 

4Dt 

This exactly matches the answer we obtained from the discrete argument.



