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Lecture 4: Asymptotics in the Central Region 

Scribe: Erik Allen 

February 10, 2005 

Lecture 3 provided a derivation of the Central Limit Theorem - showing that a distributon 
PN(x) tends to the multivariate normal distribution in the central region for sufficiently large N. 
This derivation was predicated on ignoring certain higher order terms of the expansion used in 
Laplace’s method. Lecture 4, then, examines the form of these higher order terms and under what 
conditions these terms become non-negligible. 

Gram-Charlier Expansions 

Much of the Gram-Charlier derivation was covered in the previous lecture. To see a more complete 
description of the derivation, see the notes for lecture 3. The scaled variable, ZN , used in the 
following is given by: 

XN −Nµ 
ZN = 

ψ
⇒
N 

(1) 

For each iid step, we make two requirements on the moments of the distribution. 

c2 = ψ2 < √ (2) 

and, for an expansion up to order m, 

< X m > < (3)| | √ 

These requirements of non-divergence allow an expansion for the distribution αN (x), the PDF of 
ZN as N ≡ √, Z � O(1). See lecture 3 for detailed derivation. 

h3(Z) h4(Z) hm(Z)
αN (Z) � α(Z) 1 + + + + m (4)⇒

N N 
· · ·

N 2 

where 
2 

−Z

2e 
α(Z) = ⇒

2λ 
(5) 

�3
h3(Z) = H3(Z) (6)

3! 


 �2
�4 1 �3

h4(Z) = H4(Z) − H6(Z) (7)
4! 2 3! 
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Hn(Z)’s are the Hermite polynomials, defined by the relationship 

dn 

(−1)n Hn(Z)α(Z) = α(Z) (8)
dZn 

�n are called the “normalized cumulants” and are defined by 

cn
�n = (9)

ψn 

The fact that ZN � O(1) implies that (XN −Nµ) � O(ψ
⇒
N). The region in which this approxi

mation is expected to hold is called the “central region”. For rare events (i.e. events located in the 
tails of the distribution), the CLT and the associated Gram-Charlier expansion break down. (For 
an interesting discussion of rare events and the limits of the CLT in the context of finance, see J.P. 
Bouchaud, Theory of Financial Risks (2000) in the recommended reading.) 

A similar expansion can be created for the cumulative distribution function, �N (Z) 

� Z 

�N (Z) = αN (Z
�)dZ � � Pr (ZN < Z) (10) 

−� 

G3(Z) G4(Z)
�N (Z) � �(Z) + α(Z) + + (11)⇒

N N 
· · · 

where 
� Z 

�(Z) = α(Z �)dZ � (12) 
−� 

�3
G3(Z) = − H2(Z) (13)

3! 

�2 

G4(Z) = − 
�4 
H3(Z) + 3 (14)

4! 2 (3!)2 H5(Z) 

Note: For more information, see W. Feller, Introduction to Probability Theory Vol. II (1971) 
who refers to this as an “Edgeworth Expansion” (in one dimension). For the more general context 
of random walks in d dimensions, see B. Hughes, Random Walks and Random Environments, Vol. 
I, Ch. 2 (Oxford, 1996). Hughes attributes to Chebyshev (1860) the first to study convergence 
to the CLT and uses the term “Gram-Charlier expansion” in place of “Edgeworth expansion” for 
random walks. 

The following is a rigorous result related to the Gram-Charlier expansions above, which re
markably holds for all N ∼ 1 and z, although the bound is most accurate in the central region for 
N ≥ 1. 

¯ 3
Theorem. (Berry-Esséen) If m1 = 0, m2 = ψ2, and m3 = �|x| � < √, then 

3 ̄m3
�N (z) − �(z) < (15)| | 

ψ3
⇒
N 

is a uniform bound for all N ∼ 1 and z. 
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To conclude this section, we give Gram-Charlier expansions for isotropic random walks of fixed 
step size a in two and three dimensions. The appropriate scaled coordinate here is: 

πXNπZN = 
a
⇒
N 

(16) 

The two-dimensional case was first derived by Pearson in 1906: 

αN ( πZ) � 
1 
λ 
e−Z2 

� 
1 − 

1 
4N 

� 
2 − 4Z2 + Z4

� 
+ 


 � 
1 

12N2 1 − 12Z2 + 15Z4 − 14Z6 + 
3 
8 
Z8 + · · · 

� 
(17) 

Notice that there is no 
⇒
N term in the expansion. This is because there is no drift due to unequal 

step probabilities, and the x3 term drops out. The three-dimensional case was first derived by 
Rayleigh in 1919: 

3

23 � 32 
−3Z

5 − 10Z2 + 3Z4 +
αN ( πZ) � 1 − 
20N 

2e 
2λ 

1 29 
Z4 1341 − 69Z2 + 

981 − 
35 

Z6 + 
81 
Z8 + (18)

40N2 4 10 20 
· · · 

Width of the Central Region 

Now, we estimate where the CLT approximation breaks down by considering one dimension (d=1) 

h3(Z) h4(Z)
αN (Z) � α(Z) 1 + + + + (19)⇒

N N 
· · ·

Case (i): c3 < √, �3 = 0. The CLT begins to break down when h3(Z) � O(1). To determine ∞ �
N 

the Z value at which the CLT breaks down, we find Zmax such that h3 (Zmax) 1. We also note at �
N 

→ 

this time that the Hermite polynomial Hn(Z) can be approximated as Hn(Z) � Zn .as Z ≡ √

h3(Zmax) �3Z
3 
max ⇒

N 
→ 

3!
⇒
N 

(20) 

6 
1

3 

� Zmax → 
�3 

N 

or, switching back to X representaion 


 � 

1

6 

1

3 

(21) 

XN −Nµ 6 max| | 2

3 (22)
N→ 
�3ψ 

Although we expect this diffusion process to scale as N 
1

2 , the width of the CLT approximation 
region scales as N 

2

3 . Thus, we anticipate that, if �3 is finite, the CLT approximation will be quite 
good. 
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Figure 1: Comparison of relative magnitudes of the first and second terms of the Gram-Charlier 
expansion for N = 100 and �3 = 1 
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Figure 2: Comparison of relative magnitudes of the first and second terms of the Gram-Charlier 
expansion for N = 1e8 and �3 = 1 
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This Zmax relationship can be confirmed visually, as shown in Figures 1 and 2. These figures 
compare the values of the first term of the Gram-Charlier expansion (constant value 1) with the 
second term h3 (Z) for the cases of N = 100 and N = 1e8 respectively. For the case of �3 = 1, the �

N 
predicted values of Zmax are O(1) and O(10) respectively. Figures 1 and 2 confirm that in these 
regions, the second term of the Gram-Charlier expansion become important, and can no longer be 
ignored; 

Case (ii): If �3 = 0 (e.g. for an isotropic random walk), but �4 < √, then the relevant range of 
approximation for the CLT is defined by the relation h4(Zmax) � 1. Following the same procedure N 
as in Case (i), we obtain the relation: 

1

4XN −Nµ 24 max| | 3

4N→ 
�4 

(23)
ψ 

3

4 ), even better than in Case (i). The width of the central region in Case (ii) is O(N 

Fat Tails 

We say that a PDF has a “fat tail” if it has divergent moments, as in the simple case of a power-law 
tail of the form: 

A 
p(x) � (24) 

xn as x ≡ √ 

where ml = √ for l ∼ n−1. For cases in which m2 exists (n > 3), the CLT will still hold. However, 
as some higher moments are divergent, the expansion approach of Section 1 will eventually fail to 
hold. 

Consider the fat-tailed PDF ⇒
2 1 

p(x) = (25)
λ 1 + x4 

In this example, < x � > = √ for � ∼ 3. We expect the CLT to hold in the central region (since | |
ψ exists), but the correction terms will be different. 

e−ikx 

p(̂k) = e−ikxp(x)dx = 

⇒
2 � 

dx (26)
λ 1 + x4 −� 

k/2p(̂k) = e−|k| cos 
k 

+ sin 
|
2

| 
(27)

2 

The Fourier transform of p(x) is no longer analytic. As k ≡ 0, 

k2 k 3 k4 

p(̂k) � 1 − (28)
2 

− 
3

|⇒|
2

+ 
6 

− · · · 

Where the first two terms define the analytic portion of the expansion, and subsequent terms the 
nonanalytic. One can also define an approximation to �(k) as 

k2 k 3 

�(k) = log p(̂k) � (29)
2 

− 
3

|⇒|
2

+ · · · 

In the next lecture, we will see how the Gram-Charlier expansion must be modified in cases such 
as this, due to the singularity in the characteristic function. It will turn out that the power-law tail 
amplitude, A, plays the role of a (divergent) cumulant. 


