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Lecture 2: Moments, Cumulants, and Scaling 

Scribe: Ernst A. van Nierop (and Martin Z. Bazant) 

February 4, 2005 

Handouts: 

• Historical excerpt from Hughes, Chapter 2: Random Walks and Random Flights. 

Problem Set #1 • 

1 The Position of a Random Walk 

1.1 General Formulation 

X0 = 0, if one takes N steps of size Δ�Starting at the origin � xn, then one ends up at the new position 
XN . This new position is simply the sum of independent random variable steps (Δ�� xn), 

N

XN = Δ�� xn. 
n=1 

The set { �Xn} contains all the positions the random walker passes during its walk. If the elements 
xn} are indeed independent random variables, then { �of the set {Δ� Xn} is referred to as a “Markov 

XN+1 is independent of �chain”. In a Markov chain, � Xn for n < N , but does depend on the previous 
position �XN . 

R) denote the probability density function (PDF) for the values R of the random variable Let Pn(� �

Xn. Note that this PDF can be calculated for both continuous and discrete systems, where the 
discrete system is treated as a continuous system with Dirac delta functions at the allowed (discrete) 
values. 

Let pn(�r|R) denote the PDF for Δ�� xn. Note that in this more general notation we have included 
the possibility that �r (which is the value of Δ�xn) depends on R. In Markovchain jargon, pn(�r|R) 

XN to state �is referred to as the “transition probability” from state � XN+1. Using the PDFs we just 
defined, let’s return to Bachelier’s equation from the first lecture. 

1.2 Bachelier’s Equation 

¿From the Markov assumption, the probability of finding a random walker at �R after N steps 
depends on the probability of getting to position �R − �r after N − 1 steps, and the probability of 
stepping �r, so that 

R) = pN (�r R− �r)PN−1(�R− �r) dd�r.PN (� | �
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Now, if we assume that the transition probability is translationally invariant, then pn(�r|R) = pn(�r) 
(i.e. the step does not depend on the current position �R). This reduces the integral to a convolution 
and gives us Bachelier’s equation 

R) = pN (�r)PN−1(� r) dd�r, PN (� R− �

or 
PN = pN ∗ PN−1 

where ‘ ∗’ denotes the convolution. Note that PN−1 is itself the result of a convolution, and we can 
write PN in terms of the PDFs of the steps taken (1 N) and the PDF of the initial position, P0,· · ·
so that 

PN = p1 ∗ p2 ∗ p3 ∗ · · · ∗ pN ∗ P0. 

In what follows, we assume that P0 = δ(�x), so the random walk always starts at the origin. 

1.3 The Convolution Theorem 

Convolutions are best treated by Fourier transform, which turns them into simple products. For 
two functions f(x) and g(x), the Convolution Theorem states that 

� g(�f ∗ g(�k) = f̂(�k)ˆ k). 

To derive this result, we make use of the definition of the Fourier transform, 

xf ∗ g(�k) = 
∞ 

e−i
� �

∞ 

f(� x− � x x� k· x�)g(� x�) dd� � dd��−∞ �� −∞ � 
x= 

∞ 

f(� k· g(� x�) dd� x�x�) 
∞ 

e−i
�

x− � x dd�
−∞ −∞ 

where we have inverted the order of integration by assuming both integrals are absolutely convergent 
y x− �(which follows from the common assumption, f, g ∈ L2). If we now let � = � x� we obtain 

k� k� y) dd� dd�f ∗ g(�k) = 
∞ 

f(�� x�) 
∞ 

e−i
�ye−i

�x� 
g(� y x 

−∞ −∞ 

= f(� g(�ˆ k)ˆ k). 

As described in the 2003 notes, the same method can be used to demonstrate the convolution 
theorem for discrete functions, � � � � 

e−ikyf(y) e−ikz f̂(k)ĝ(k) = g(z) 
y z 

= e−ikx g(y)f(x− y) 
x y 

= f ∗ g(k), 

where all the terms with an exponent equal to z have been collected on the right hand side of the 
e−ik(y+z).second line. The key property used in both derivations is that e−ikye−ikz = 
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1.4 Exact Solution for the PDF of the Position 

Using the convolution theorem, we now write 

P̂N (�k) = p̂1(�k)p̂2(�k) . . . p̂N (�k) 
N

= p̂n(�k). 
n=1 

In the case of identical steps, this simplifies to P̂N (�k) = (p̂1(�k))N . Using the inverse transform, we 
find that the PDF of the position of the walker is given by 

PN (� i� �
� dd�kx x) = 

� ∞ 

e k·
N

p̂n(�k) .
(2π)d 

n=1−∞ 

This is an exact solution, although the integral cannot be evaluated analytically in terms of ele
mentary functions, except in a few special cases. (See Hughes, Ch. 2.) However, we are generally 
interested in the “longtime limit” of many steps, N → ∞, where the integral can be approxi
mated by asymptotic analysis. This will be pursued in the next lecture. Here, we focus on scaling 
properties of the distribution with the number of steps. 

2 Moments and Cumulants 

2.1 Characteristic Functions 

The Fourier transform of a PDF, such as P̂N (�k) for XN , is generally called a “characteristic function” 
in the probability literature. For random walks, especially on lattices, the characteristic function 
for the individual steps, ˆ k), is often referred to as the “structure function”. Note that p(�

x) dd�P̂ (�0) = 
∞ 

P (� x = 1 
−∞ 

due to the normalization of P (�x), and that this is a maximum, since 

|P̂ (�k = 0) x) dd� x) dd�x = P (� x = 1.� | ≤ |e−i�k·xP (� |

If P (�x) is nonzero on a set of nonzero measure, then the complex exponential factor causes cancel
lations in the integral, resulting in |P̂ (�k) < 1 for �k = �0. 

2.2 Moments 

In the 1dimensional case (d = 1), the moments of a random variable, X, are defined as 

m1 = x�
2m2 = x 

. . . 
nmn = x . 
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To get a feeling for the significance of moments, note that m1 is just the mean or expected value 
of the random variable. When m1 = 0, the second moment, m2, allows us to define the “root
meansquare width” of the distribution, 

√
m2. In a multidimensional setting (d > 1), the moments 

become tensors, 
m(j1j2...jn) = �xj1xj2 . . . xjn �,n 

so the nth moment is a tensor of rank n with dn components. The offdiagonal components measure 
anisotropy, and generally the moment tensors describe the “shape” of the distribution. 

In probability, a characteristic function P̂ (�k) is also often referred to as a “momentgenerating 
function”, because it conveniently encodes the moments in its Taylor expansion around the origin. 
For example, for d = 1, we have 

∞

P̂ (k) = 
� (−i)nknmn 

n! 
n=0 

1 
= 1− im1k − m2k

2 . . . 
2

since 
∂nP̂

mn = in (0). 
∂kn 

For d > 1, the moment tensors are generated by 

∂nP̂(j1j2...jn) = in m (�0)n ∂kj1∂kj2 . . . ∂kjn 

and from the Taylor expansion, 

ˆ �P (�k) = 1− im1 k − 
1�k · m �k + . . . . 

2
· 

2 
· 

Note that P̂ (�k) is analytic around the origin if and only if all moments exist and are finite (mn <∞
for all n). This condition breaks down in cases of distributions with “fat tails”, to be discussed in 
subsequent lectures. 

2.3 Cumulants 

Certain nonlinear combinations of moments, called “cumulants”, arise naturally when analyzing 
sums of independent random variables. Consider 

x) = e k·x ˆ k)P (� i� �P (�
dd�k 

(2π)d 

k) d
d�kk·x+ψ(�i� �= e 

(2π)d 

where 
ψ(�k) = log P̂ (�k) 

is called the “cumulant generating function”, whose Taylor coefficients at the origin (analogous to 
the moments above) are the “cumulants”, which are scalars for d = 1 and, more generally, tensors 
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for d > 1 

in c(j1,j2,...,jn) ∂nψ 
= (�0)n ∂kj1∂kj2 . . . ∂kjn 

ψ(�k) = −ic1 k − 
1�k · c 

2 
�k + . . . . · 

2 
· 

The cumulants can be expressed in terms of the moments by equating Taylor expansion coeffi
cients in Eq. (2.3). For d = 1, we find 

c1 = m1 or ‘mean’

2
c2 = m2 − m1 = σ2 or ‘variance’ (σ = standard deviation) 

c3 = m3 − 3m1m2 + 2m3 or ‘skewness’ 1

2 2 4
c4 = m4 − 3m2 − 4m1m3 + 12m1m2 − 6m1 or ‘kurtosis’. 

(Note that “skewness” and “kurtosis” are also sometimes used for the normalized cumulants, defined 
in the next lecture.) Although these expressions increase in complexity rather quickly, the lth 

cumulant can be expressed in terms of the first l moments in closed form via the determinant of an 
‘almost’ lower triangular matrix, 

cl = (−1)l+1 .


m1 1 0 0 0 0 . . . 0 
1 
m1 

0 0 0 . . . 0m2 m1 
2 1 

m1 

0 0 . . . 0m3 m2 1 
3 3 1 

m1m5 m4 1 m3 2 m2 3 

0 . . . 0

1 . . . 0


m4 m3 m21 2 
4 4 4 

1� 
. . . . . . . .
. . . . . . . . . . . . . . . . 

. . .. . . . . . . . . . . . ml−1 ml−2 
l−1 
l−2ml ml−1 . . . . . . . . . . . . . . . m1 

For d > 1, the nth cumulant is a tensor of rank n with dn components, related to the moment 
tensors, ml, for 1 ≤ l ≤ n. For example, the second cumulant matrix is given by 

c2
(ij) = m(ij) (i) (j) 

.2 − m1 m1 

Additivity of Cumulants 

A crucial feature of random walks with independently identically distributed (IID) steps is that 
cumulants are additive. If we define ψ(�k) and ψN (�k) to be the cumulant generating functions of 
the steps and the final position, respectively, then 

k·x+N ˆ k) d
d�ki� � ψ(�

(2π)d
x) = ePN (�

k) d
d�kx+ψN (�i� �k·

(2π)d 
,= e 

which implies 
ψN (�k) = Nψ(�k). 
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(j1,j2,...,jn) thTherefore, the nth cumulant tensor cn,N for the position after N steps is related to the n
cumulant tensor for each step by 

cn,N = Ncn. 

More generally, if steps are independent but not identical, we still obtain cn,N by simply adding the 
cumulants of the N steps. 

This is a very interesting result in itself, as it brings us back to one of the basic characteristics 
of normal diffusion. Recall that the standard deviation σ is related to c2 by σ = 

√
c2, and this 

measures the width of the distribution. After N steps, σN will have evolved to 
√
Nc2 = σ

√
N . 

We have recovered the typical “squareroot scaling” of normal diffusion (with time or steps taken). 
As in the first lecture, we see that normal diffusion generally follows from independent (and nearly 
identical) steps of finite variance (or second moment). 

In the next lecture, we will study the longtime asymptotics of PN (�x) in cases of normal diffusion, 
with a finite second moment. 


