Solutions to the Midterm Exam

Martin Z. Bazant

November 16, 2006

1 Discrete versus continuous steps in a random walk

1.1 Finding a generating function and $D_{2}(a)$

For $p_{n}=C a^{|n|}$, the probability generating function is

$$
\begin{aligned}
P(z) & =\sum_{n=-\infty}^{\infty} p_{n} z^{n} \\
& =C\left[\sum_{n=0}^{\infty}(a z)^{n}+\sum_{n=1}^{\infty}\left(\frac{a}{z}\right)^{n}\right] \\
& =C\left[\frac{1}{1-a z}+\frac{a}{z-a}\right]\left(a<|z|<a^{-1}\right) \\
& =C\left[\frac{\left(1-a^{2}\right) z}{(1-a z)(z-a)}\right] .
\end{aligned}
$$

For normalization, $P(1)=\sum p_{n}=1$, we need

$$
C(a)=\frac{1-a}{1+a}
$$

and thus

$$
P(z)=\frac{(1-a)^{2} z}{(1-a z)(z-a)} .
$$

The second moment is easily calculated as

$$
\sigma^{2}=\sum_{n=-\infty}^{\infty} n^{2} p_{n}=\sum_{n=-\infty}^{\infty} n(n-1) p_{n}=P^{\prime \prime}(1)
$$

where we use $\sum n p_{n}=0$ since $p_{n}=p_{-n}$. Since

$$
P^{\prime \prime}(z)=2 a C\left[a(1-a z)^{-3}+(z-a)^{-3}\right], \quad P^{\prime \prime}(1)=\frac{2(a+1) a C}{(1-a)^{3}}
$$

we finally obtain the diffusivity,

$$
D_{2}(a)=\frac{\sigma^{2}}{2 \tau}=\frac{C(1+a) a}{(1-a)^{3}}=\frac{a}{(1-a)^{2}}
$$

since the time step in the continuum approximation is $\tau=1$.

1.2 Continuum approximation

Now we consider the continuum approximation,

$$
p(x)=\frac{1}{2 b} e^{-|x| / b}, \quad(b=-1 / \log a)
$$

which has the same exponential decay as p_{n} for $|n| \gg 1$. The Fourier transform should look familiar (from problem set 2), but it's easy enough to work out again:

$$
\begin{aligned}
\hat{p}(k) & =\int_{-\infty}^{\infty} e^{-i k x} p(x) d x \\
& =\frac{1}{2 b}\left(\int_{0}^{\infty} e^{-x(i k+1 / b)} d x+\int_{-\infty}^{0} e^{x(-i k+1 / b)} d x\right) \\
& =\frac{1}{2}\left(\frac{1}{1+i b k}+\frac{1}{1-i b k}\right) \\
& =\frac{1}{1+(b k)^{2}} .
\end{aligned}
$$

The cumulant generating function is

$$
\psi(k)=\log \hat{p}(k)=-\log \left(1+(b k)^{2}\right)=\sum_{m=1}^{\infty} \frac{(-1)^{m}(b k)^{2 m}}{m} \equiv \sum_{n=1}^{\infty} \frac{(-i)^{n} c_{n} k^{n}}{n!}
$$

which implies $c_{2 m+1}=0$ and

$$
c_{2 m}=\frac{(2 m)!b^{2 m}}{m}
$$

The coefficients in the modified Kramers-Moyall expansion are then $\bar{D}_{2 m+1}=0$ and

$$
\bar{D}_{2 m}=\frac{b^{2 m}}{m}=\frac{1}{m(\log a)^{2 m}}
$$

1.3 Log-linear plot

The two diffusivities are

$$
D_{2}(a)=\frac{a}{(1-a)^{2}} \quad \text { and } \quad \bar{D}_{2}(b(a))=\frac{1}{(\log a)^{2}}
$$

In the limit $a \rightarrow 1$ the width of the distribution $b=-1 / \log a$ becomes much larger than the lattice spacing, and thus the continuum approximation should become exact, $D_{2} \sim \bar{D}_{2}$, which is easily verified. In the opposite limit, $a \rightarrow 0$, the decay length for the distribution is much less than the lattice spacing, and the two models should be very different. In fact,

$$
\frac{\bar{D}_{2}}{D_{2}} \sim \frac{1}{a(\log a)^{2}} \rightarrow \infty \quad \text { as } a \rightarrow 0
$$

These limits are also clear in figure 1.

Figure 1: A log-linear plot of $D_{2}(a)$ and $\bar{D}_{2}(b(a))$.

2 First passage of N random walks in two dimensions

2.1 First passage position of a single walker

Since the diffusivity is a scalar (isotropic process), the Green function for the x-component (marginal probability density, after integrating out the y-component) will describe a one-dimensional x diffusion process with the same D,

$$
G(x, t \mid 0)=\frac{e^{-x^{2} / 4 D t}}{\sqrt{4 \pi D t}} .
$$

By symmetry, the x process plays no role in determining the first passage time, whose (Smirnov ${ }^{1}$) probability density will be same as for a one-dimensional y diffusion process with the same D,

$$
f(t \mid a)=-S^{\prime}(t \mid a)=\frac{a e^{-a^{2} / 4 D t}}{\sqrt{4 \pi D t^{3}}}
$$

where the survival probability is

$$
S(t \mid a)=\operatorname{erf}\left(\frac{a}{\sqrt{4 D t}}\right)
$$

The hitting probability density can be calculated as

$$
\varepsilon(x \mid a)=\int_{0}^{\infty} f(t \mid a) G(x, t \mid 0) d t
$$

since this is an integral over all times t of the probability that the x-component is x given that first passage occurs at time t. As noted above, these events are independent, so the integrand is just a

[^0]

Figure 2: Plots of $\varepsilon_{N}(x \mid a)$ for several different values of N, for the case when $a=D=1$. The case of $N=1$ is the Cauchy distribution, while the cases $N>1$ are from numerical integration of equation 1. The substitution $1 / t=-\log \alpha$ was employed to change the integral into one over a finite range $0<\alpha<1$, and the resulting expression was evaluated using Simpson's rule.
product of the two probabilities. The integral is easily evaluated:

$$
\begin{aligned}
\varepsilon(x \mid a) & =\frac{a}{4 \pi D} \int_{0}^{\infty} e^{-\left(x^{2}+a^{2}\right) / 4 D t} \frac{d t}{t^{2}} \\
& =\frac{1}{\pi} \frac{a}{a^{2}+x^{2}}
\end{aligned}
$$

which is the same Cauchy distribution we obtained in lecture by conformal mapping. Note that $\left\langle x^{2}\right\rangle=\int_{-\infty}^{\infty} x^{2} \varepsilon(x \mid a) d x=\infty$.

2.2 First passage position of the first of N independent walkers

The probability that N independent walkers survive is just the product of the individual survival probabilities, $S_{N}(t)=S(t)^{N}$. Therefore, the PDF of the minimum first passage time is

$$
f_{N}(t \mid a)=-\frac{d}{d t} S(t)^{N}=N f(t \mid a) S(t)^{N-1}
$$

The hitting probability of the first walker is given by the x diffusion process sampled at this time,

$$
\begin{equation*}
\varepsilon_{N}(x \mid a)=\int_{0}^{\infty} f_{N}(t \mid 0) G(x, t \mid 0) \tag{1}
\end{equation*}
$$

It does not seem that this integral can be performed analytically, so some numerical integrations are shown in figure 2 .

The variance of the hitting position is given by

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =\int_{-\infty}^{\infty} x^{2} \varepsilon_{N}(x \mid 0) d x \\
& =\int_{0}^{\infty} d t f_{N}(t \mid a) \int_{-\infty}^{\infty} d x x^{2} G(x, t \mid 0) \\
& =\int_{0}^{\infty} d t f_{N}(t \mid a) 2 D t .
\end{aligned}
$$

For $t \rightarrow \infty$ we have $f(t \mid a) \propto t^{-3 / 2}, S(t) \propto t^{-1 / 2}, f_{N}(t \mid a) \propto t^{-1-N / 2}$, and thus the integrand decays like $t f_{N}(t \mid a) \propto t^{N / 2}$. Therefore, the variance is finite only if $N / 2>1 \Rightarrow N>2 \Rightarrow N \geq 3$. So, once again $N_{c}=3$ is the magic number of walkers such that the first one will hit in a region of finite variance in space. This should come as no surprise, because this is the same critical number needed to have a finite mean first passage time for the first walker, as shown in lecture.

3 First passage to a circle

In the physical z plane, the walker is released at $(x=a, y=0)$ and hits the unit circle. We would like to map this domain with $w=f(z)$ to the interior of the unit circle with the source at the origin in the mathematical w plane, where we know the complex potential is

$$
\Phi=\frac{\log w}{2 \pi} .
$$

We could choose a Möbius transformation with the constraints, $f(a)=0, f(1)=-1, f(-1)=1$, which yields

$$
f(z)=\frac{z-a}{a z-1} .
$$

The complex potential in the z plane is therefore

$$
\Phi=\frac{1}{2 \pi} \log \left(\frac{z-a}{a z-1}\right)=\frac{1}{2 \pi}\left(\log (z-a)-\log \left(z-a^{-1}\right)-\log a\right)
$$

which is clearly the sum of the source term and an image sink at ($a^{-1}, 0$) (and a constant). The hitting probability density is given by the normal electric field on the circle:

$$
\begin{aligned}
\varepsilon(\theta \mid a) & =\hat{n} \cdot \nabla \phi=-\operatorname{Re}\left(e^{i \theta} \overline{\Phi^{\prime}}\right) \\
& =\operatorname{Re}\left(\frac{1}{1-a^{-1} e^{-i \theta}}-\frac{1}{1-a e^{-i \theta}}\right) \\
& =\frac{1}{2 \pi}\left(\frac{1-a^{-1} \cos \theta}{1-2 a^{-1} \cos \theta+a^{-2}}-\frac{1-a \cos \theta}{1-2 a \cos \theta+a^{2}}\right) .
\end{aligned}
$$

Therefore, the

$$
\frac{\varepsilon(0)}{\varepsilon(\pi)}=\left(\frac{a+1}{a-1}\right)^{2}
$$

which is nine for source at twice the radius $(a=2)$.
The geometrical interpretation follows from the cumulative distribution function

$$
\psi=\operatorname{Im} \Phi=\frac{1}{2 \pi}\left(\arg (z-a)-\arg \left(z-a^{-1}\right)\right)=\frac{\gamma}{\pi}
$$

where γ is the angle formed at a point on the circle by drawing lines to the "charge" at $z=a$ and its "image" at $z=a^{-1}$. The probability of hitting between angle θ_{1} and θ_{2} on the circles is just the difference of two such angles, subtended from each of the points to $z=a$ and $z=a^{-1}$:

$$
\int_{\theta_{1}}^{\theta_{2}} \varepsilon(\theta \mid a) d \theta=\frac{\gamma_{2}-\gamma_{1}}{2 \pi} .
$$

For infinitessimal $d \theta=\theta_{2}-\theta_{1}$, we obtain the hitting probability density,

$$
\varepsilon(\theta \mid a)=\frac{1}{2 \pi} \frac{d \gamma}{d \theta} .
$$

[^0]: ${ }^{1}$ There is a typo in the Exam 2, problem 2 solution from 2005: t should be t^{3} under the square root. However, it is correct in Lecture 162005 notes and was correct in lecture this year.

