Solutions to Problem Set 5

Edited by Chris H. Rycroft*

December 5, 2006

1 Restoring force for highly stretched polymers

1.1 A globally valid asymptotic approximation

Using the substitution $t=u a$ the expression can be rewritten as

$$
\begin{aligned}
P_{N}(r) & =\frac{1}{2 \pi^{2} r} \int_{0}^{\infty} \frac{t}{a} \sin (r t / a)\left[\frac{\sin t}{t}\right]^{N} \frac{d t}{a} \\
& =\frac{1}{2 \pi^{2} a^{2} r} \int_{0}^{\infty} t \sin (r t / a)\left[\frac{\sin t}{t}\right]^{N} d t
\end{aligned}
$$

The integrand is even, and can be rewritten as

$$
\begin{aligned}
P_{N}(r) & =\frac{1}{4 \pi^{2} a^{2} r} \int_{-\infty}^{\infty} t \sin (r t / a)\left[\frac{\sin (t)}{t}\right]^{N} d t \\
& =\frac{1}{8 i \pi^{2} a^{2} r} \int_{-\infty}^{\infty} u\left(e^{i r t / a}-e^{-i r t / a}\right)\left[\frac{\sin (t)}{t}\right]^{N} d t \\
& =\frac{1}{4 i \pi^{2} a^{2} r} \int_{-\infty}^{\infty} t e^{i r t / a}\left[\frac{\sin (t)}{t}\right]^{N} d t \\
& =\frac{1}{4 i \pi^{2} a^{2} r} \int_{-\infty}^{\infty} t \exp [-N f(t)] d t
\end{aligned}
$$

where

$$
f(t)=-\frac{i r t}{N a}-\log \left(\frac{\sin t}{t}\right)
$$

We define $\xi=r / N a$ and keep it fixed. The first and second derivatives are

$$
\begin{aligned}
f^{\prime}(t) & =-i \xi-\cot t+\frac{1}{t} \\
f^{\prime \prime}(t) & =1+\cot ^{2} t-\frac{1}{t^{2}}
\end{aligned}
$$

[^0]By putting $f^{\prime}(t)=0$, we find that there is a saddle point at $t_{0}=i L^{-1}(\xi)$ where L is the Langevin function $L(\xi)=\operatorname{coth} \xi-1 / \xi$. Over the range $0<\xi<1$ the Langevin function is monotonic and thus has a well-defined inverse. We see that the second derivative of f can be written as

$$
\begin{aligned}
f^{\prime \prime}(t) & =1-\operatorname{coth}^{2}(-i t)+\frac{1}{(-i t)^{2}} \\
& =1-\left(\operatorname{coth}(-i t)-\frac{1}{(-i t)}\right)^{2}-\frac{2 \operatorname{coth}(-i t)}{(-i t)}+\frac{2}{(-i t)^{2}} \\
& =1-\xi^{2}-\frac{2 \xi}{L^{-1}(\xi)}
\end{aligned}
$$

This function is positive, so we deform the contour of integration to the line $\operatorname{Im}(t)=L^{-1}(\xi)$. Our main contribution comes from the above saddle point and we obtain

$$
\begin{aligned}
P_{N}(r) & \sim \frac{L^{-1}(\xi)}{4 \pi^{2} r a^{2}} \sqrt{\frac{2 \pi}{N\left(1-\xi^{2}-2 \xi / L^{-1}(\xi)\right)}} e^{-N \xi L^{-1}(\xi)}\left[\frac{\sinh \left(L^{-1}(\xi)\right)}{L^{-1}(\xi)}\right]^{N} \\
& \sim \frac{L^{-1}(\xi)}{\xi \sqrt{8 \pi^{3} N^{3} a^{6}\left(1-\xi^{2}-2 \xi / L^{-1}(\xi)\right)}} e^{-N \xi L^{-1}(\xi)\left[\frac{\sinh \left(L^{-1}(\xi)\right)}{L^{-1}(\xi)}\right]^{N}} \\
& \sim \frac{L^{-1}(r / a N)}{r \sqrt{8 \pi^{3} N a^{4}\left(1-(r / a N)^{2}-2 r / a N L^{-1}(r / a N)\right)}} e^{-r L^{-1}(r / a N) / a}\left[\frac{\sinh \left(L^{-1}(r / a N)\right)}{L^{-1}(r / a N)}\right]^{N}
\end{aligned}
$$

1.2 Free energy

The free energy is given by

$$
\begin{aligned}
F= & T S \\
= & -T \log P_{N}(r) \\
\sim & \frac{T}{2} \log \left[8 \pi^{3} N a^{4}\left(1-(r / a N)^{2}-2 r / a N L^{-1}(r / a N)\right)\right]+\frac{r T L^{-1}(r / N a)}{a} \\
& -T \log L^{-1}(r / a N)+T \log r-T N \log \left[\frac{\sinh \left(L^{-1}(r / N a)\right)}{L^{-1}(r / N a)}\right] .
\end{aligned}
$$

The restoring force is given by

$$
\begin{aligned}
f= & -\frac{d F}{d r} \\
= & -\frac{T\left(-2 r / a^{2} N^{2}-2 / a N L^{-1}(r / N a)+2 r M(r / N a) /\left(a N L^{-1}(r / N a)\right)^{2}\right)}{2\left(1-(r / a N)^{2}-2 r / a N L^{-1}(r / a N)\right)} \\
& -\frac{T L^{-1}(r / N a)}{a}-\frac{T r M(r / N a)}{N a^{2}}+T \frac{M(r / a N)}{a N L^{-1}(r / a N)}-T / r \\
& +\frac{T N \operatorname{coth}\left(L^{-1}(r / N a) M(r / N a)\right.}{N a}-\frac{T N M(r / N a)}{N a L^{-1}(r / N a)} \\
= & \frac{T\left(-2 r / a^{2} N^{2}-2 / a N L^{-1}(r / N A)+2 r M(r / N a) /\left(a N L^{-1}(r / N a)\right)^{2}\right)}{2\left(1-(r / a N)^{2}-2 r / a N L^{-1}(r / a N)\right)} \\
& -\frac{T L^{-1}(r / N a)}{a}+T \frac{M(r / a N)}{a N L^{-1}(r / a N)}-T / r
\end{aligned}
$$

Figure 1: Comparison between the two approximations for free energy for the case when $a=T=1$ and $N=10$.
where $M(z)$ is the first derivative of $L^{-1}(z)$. By the inverse function theorem, we know that

$$
M(z)=\frac{1}{L^{\prime}\left(L^{-1}(z)\right)} .
$$

We compare this to the central region approximation, shown on problem set 1 to be

$$
P_{N}^{c}(r) \sim\left(\frac{3}{2 \pi a^{2} N}\right)^{3 / 2} \exp \left(-\frac{3 r^{2}}{2 a^{2} N}\right)
$$

The free energy for this expression is

$$
F^{c}=-\frac{3}{2} \log \left(\frac{3}{2 \pi a^{2} N}\right)+\frac{3 r^{2}}{2 a^{2} N}
$$

and the restoring force is

$$
f^{c} \sim-\frac{3 r}{a^{2} N} .
$$

A comparison between the two expressions for free energy and restoring force are shown in figures 1 and 2 respectively. We see a good match in the central region between the two approximations. As $r \rightarrow a$, we see that the restoring force begins to get very large, as would be expected for a highly stretched polymer.

Figure 2: Comparison between the two approximations for the restoring force for the case when $a=T=1$ and $N=10$.

2 Linear Polymer Structure

2.1 Mean Total Energy

We define $\eta=\alpha \sigma^{2} / k T$ so that $p(\theta) \propto e^{\eta \cos \theta}$. The normalizing constant can be found as

$$
\begin{aligned}
A(\eta) & =\int_{0}^{2 \pi} \int_{0}^{\pi} e^{\eta \cos \theta} \sin \theta d \theta d \phi \\
& =2 \pi \frac{e^{\eta}-e^{-\eta}}{\eta}=4 \pi \frac{\sinh \eta}{\eta}
\end{aligned}
$$

Thus we have the normalized $p(\theta)$ as

$$
p(\theta)=\frac{1}{A(\eta)} e^{\eta \cos \theta}=\frac{\eta}{4 \pi \sinh \eta} e^{\eta \cos \theta} .
$$

To get $\left\langle E_{N}\right\rangle$ we first calculate the correlation coefficient $\rho(T)$, which is

$$
\rho(T)=\frac{\left\langle\overrightarrow{x_{n}} \cdot \Delta \overrightarrow{x_{n+1}}\right\rangle}{a^{2}}=\langle\cos \theta\rangle .
$$

We can get this easily using the derivative of $A(\eta)$:

$$
\begin{aligned}
\langle\cos \theta\rangle & =\frac{1}{A(\eta)} \int_{0}^{2 \pi} \int_{0}^{\pi} \cos \theta e^{\eta \cos \theta} \sin \theta d \theta d \phi \\
& =\frac{1}{A(\eta)} \frac{d A(\eta)}{d \eta}=\operatorname{coth} \eta-\frac{1}{\eta} .
\end{aligned}
$$

Therefore

$$
\left\langle E_{N}\right\rangle=-(N-1) \alpha a^{2} \rho(T)=-(N-1) \alpha a^{2}\left(\operatorname{coth} \eta-\frac{1}{\eta}\right) .
$$

2.2 Asymptotic scaling

Since two adjacent steps have correlation $\rho(T)$, the correlation between n-th and $n+m$-th steps is generally given by

$$
\frac{\left\langle\Delta \vec{x}_{n} \cdot \Delta \overrightarrow{x_{n+m}}\right\rangle}{a^{2}}=\rho(T)^{m} .
$$

From the lecture we know

$$
\left\langle R_{N}^{2}\right\rangle \sim \frac{1+\rho(T)}{1-\rho(T)} a^{2} \quad \text { and } \quad a_{\mathrm{eff}}(T) \sim \sqrt{\frac{1+\rho(T)}{1-\rho(T)}} a \quad \text { as } N \rightarrow \infty
$$

Thus the asymptotic behaviors of $\rho(T)$ and $a_{\text {eff }}(T)$ are

$$
\begin{gathered}
\rho(T)=\frac{e^{\eta}+e^{-\eta}}{e^{\eta}-e^{-\eta}}-\frac{1}{\eta}= \begin{cases}\frac{\eta}{3}=\frac{3 \alpha \sigma^{2}}{k_{B} T} & (\eta \rightarrow 0 \text { or } T \rightarrow \infty) \\
1-\frac{1}{\eta}=1-\frac{k_{B} T}{\alpha \sigma^{2}} & (\eta \rightarrow \infty \text { or } T \rightarrow 0),\end{cases} \\
\frac{a_{\text {eff }}(T)}{a} \\
\sim \begin{cases}1+\frac{3 \alpha \sigma^{2}}{k_{B} T} & (T \rightarrow \infty) \\
\sqrt{\frac{2 \alpha \sigma^{2}}{k_{B} T}} & (T \rightarrow 0) .\end{cases}
\end{gathered}
$$

3 A persistent Lévy flight

First we take the sum of our non-independent steps, each expressed in terms of the independent steps, denoted with primes.

$$
X_{N}=\sum_{n=1}^{N} \Delta x_{n}=(1+\rho) \Delta x_{1}^{\prime}+\sum_{n=2}^{N-1} \Delta x_{n}^{\prime}+(1-\rho) \Delta x_{N}^{\prime} .
$$

The structure function, $\hat{P}(k)$, of the PDF of $\sum \Delta x_{n}$ is given by the product of the structure functions associated with each step. The length scales of the first and last steps are renormalized by $1+\rho$ and $1-\rho$ respectively. Thus the structure function for the entire walk is given by

$$
\hat{P_{N}}(k)=\exp \{-a(1+\rho)|k|-a(N-2)|k|-a(1-\rho)|k|\}=e^{-a N|k|}
$$

and the corresponding PDF as found in Homework 1 is given by

$$
P_{N}(x)=\frac{a N}{\pi\left(x^{2}+a^{2} N^{2}\right)}
$$

Thus the half-width scales as $\Delta x_{1 / 2} \sim a N$ and it doesn't depend on ρ at all.

4 A continuous-time random walk

As shown in the lecture notes (2005, lecture 23), if the waiting time distribution is $\psi(t)=e^{-t}$, then the number of steps N that have taken place by time t follows a Poisson distribution

$$
\mathcal{P}(N, t)=\frac{t^{N}}{e^{-t}} N!.
$$

We also know that the probability of a Bernoulli walker being at a location x after N steps is

$$
P(x, N)= \begin{cases}2^{-N}\left(\frac{N}{N+x}\right) & \text { for } x+N \text { even } \\ 0 & \text { for } x+N \text { odd. }\end{cases}
$$

By summing over all possible numbers of steps taken, we find that the probability disribution of the walker being at a location x after time t is

$$
P(x, t)=\sum_{N=0}^{\infty} P(N, t) \mathcal{P}(N, t)
$$

Only the terms in this sum of the form $N=x+2 m$ where $m=0,1,2, \ldots$ will have a non-zero contribution, so

$$
\begin{aligned}
P(x, t) & =\sum_{m=0}^{\infty} P(x+2 m, t) \mathcal{P}(x+2 m, t) \\
& =\sum_{m=0}^{\infty} \frac{2^{-x-2 m}\binom{x+2 m}{m} t^{x+2 m} e^{-t}}{(x+2 m)!} \\
& =\sum_{m=0}^{\infty} \frac{(t / 2)^{x+2 m} e^{-t}}{(x+m)!m!} \\
& =I_{x}(t) e^{-t}
\end{aligned}
$$

where $I_{x}(t)$ is the modified Bessel function.

[^0]: *Solution to problem 1 based on sections of Random Walks and Random Environments by Barry Hughes. Solutions 2 and 3 based on previous years.

