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1 Inelastic diffusion 

1.1 The PDF of PN (x) 

The PDF of the random variable anΔXn is p(xa−n)a−n . If ΔXn has characteristic function p̂(k) 
then anΔXn has characteristic function 

∞ 

e−ikx p(xa
−n)

dx =

∞ 

e−ikya
n 
p(y) dy 

an 
−∞ −∞ 

= p̂(kan). 

By the convolution theorem, we know that the characteristic function of XN can be written as 

P̂N (k) = 
N� 
p̂(kan) 

n=1 

and hence the PDF is given by


∞ eikx dx 
PN (k) = 

N� 

2π 
n=1−∞ 

p̂(kan) 

N� 
= 

2π 
n=1−∞ −∞ 

1.2 The cumulants of XN 

∞ eikx dx ∞ 

e−ikya
n 
p(y) dy. 

The cumulant generating function of the nth step is given by 

ψn(k) = log p̂(kan) 

and therefore the lth cumulant is given by 

i−l 
dlψn 

dkl 
= a
lni−l 

dl 

dkl 
ψn = a
ln cl. 

k=0 k=0 

If random variables are added, then their cumulants add. We therefore know that the cumulants 
of XN are given by 

N

CN,l = 
al(1 − alN )ln cl = 

1 − al
a
 cl. 

n=1 

1 
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1.3 Limits as N →∞ 

By taking N →∞ in the above expression, we see that the cumulants of X∞ are given by 

la
Cl = cl.1 − al 

If a = 1 − � where � > 0 is small, then we see that 

C2m a2m �
1 − a2 �m 

c2m = 
C2 2m a2 c2 
m 1 − a m 

(2� − �2)m c2m = 
1 − (1 − �)2m c2 � m�

2m�m 1 − 2 
� m 

c2m = 
c2m� − 2m(2m−1) �2 + . . . m 
2 

2 

= 2m�m−1 1 − �m + . . . c2m 

2m − 2m(2
2 
m−1) 2

� + . . . cm 

= O(�m−1). 

1.4 A “Central Limit Theorem” 

The PDF of X can be written as ∞ 

P (x) = 
∞ dk

e ikx+ψ∞(k) 
∞ 2π �−∞ � � ∞ dk C2k

2 iC3k
3 C4k

4 

=
2π 

exp ikx + 0 − 
2 

− 
6 

+
24 

. 
−∞ 

If x = ζC2
1/2 we see that 

1/2 1/2 
∞ dl l2 C3l

3 C4l
4 

φ(ζ, �) = C2 P∞(ζC2 ) = 
2π 

exp ilζ − 
2 
− i 

6C1/2 
+ 

24C2
2 . 

−∞ 2 

From the previous result, we know that as � 0, the terms involving the higher cumulants tend to →
zero. Therefore we have 

φ(ζ, �) φ(ζ) = 
∞ dl 

e ilζ−l
2/2 → 

2π−∞ 

e−ζ
2/2 

= .√
2π 

2 Breakdown of the CLT for decaying walks 

2.1 The PDF of X∞ for a = 0.99 

Appendix A shows a simple C++ code to simulate 105 walkers from the decaying PDF. Figure 
1 shows the PDF of x component of this distribution, and figure 2 shows a comparison to the 
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Figure 1: Simulated PDF of X for a = 0.99 based on 109 trials. ∞ 

formulae calculated in question 1. We see that the two curves match to a very high degree of 
accuracy, particularly in the central region. We know however that this match will not continue 
forever: since X� is bounded, its PDF will be uniformly zero outside of some region. However a ∞
Gaussian features non-zero probabilities everywhere. 

2.2 The exact PDF of X∞ for a = 1/2 

To find the PDF of X for a = 1/2 we first consider the change of variables X� = (x, y) R� = (r, s)∞ →
given by 

1 + x + y 
r = 

2

1 + x − y


s = .
2 

In the transform variables, the walk starts from R� 0 = (1/2, 1/2) and the PDF of the nth step is 
given by 

1 
pn(r, s) = 

4
(δr,−1/2n+1 + δr,1/2n+1 )(δs,−1/2n+1 + δs,1/2n+1 ). 

From this from, it is clear that the variables r and s are independent. We see that the Nth step of 
the r component can be written as 

N1 � 2In − 1 
RN = + 

2n+12 
n=1 
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Figure 2: Simulated PDF of X for a = 0.99 based on 109 trials on a log scale, compared with a ∞
Gaussian curve with a variance calculated using the formula derived in question 1. 

where the In’s are independent random variables which take values 0 and 1 with equal probability. 
This can be rewritten as 

NN

RN =
2n+1 +2 

− 
1
 1
 In 

2n 

N

n=1 n=1 

1 1 1 − 1 In2N += 
2 
− 

22 1 2n1 −
2 n=1 

N

2n 
n=1 

1

= +


2N+1 

In 
.


In the limit, as N →∞, we obtain

N


∞ 2n .

n=1 

In
R =


Thus, the binary expansion of R is∞ 

R = 0.I1I2I3I4I5I6 . . . ∞ 

From this form, it is clear that every possible binary expansion between 0 and 1 can be achieved, 
each with equal probability. Thus R is uniformly distributed on the interval [0, 1]. Since the same ∞
is true for S , we know that the joint PDF is given by ∞

P (r, s) = 
1 for 0 < r < 1, 0 < s < 1 

∞ 0 otherwise. 

Thus the PDF of X is given by ∞ 

P∞(r, s) =

1 
2	 for |x − y| < 1, |x + y| < 1 

otherwise. 0
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Figure 4: The cumulative distribution func-
Figure 3: The cumulative distribution func-

tion of the rotated variable q = 1/2 + x − y
tion of the x component of X�∞ for a = 1/3. 

for a = 1/3. 

2.3 The CDF of X�∞ for a = 1/3 

To compute the CDF of x component of X� for a = 1/3, we first consider the possible values that ∞
it can take. The maximum that x can increase by at the nth step is 1/3n and thus the maximum 
value that x can take is ∞ �∞ 1 1 1 

= = .
3n 3(1 − 1 ) 2

n=1 3 

By symmetry, we therefore know that X∞ can take values in the range [−1/2, 1/2]. We also note 
that the sum of steps starting at n = 2 follows the same distribution as X , but scaled by 1/3. If ∞
the first step is ΔX1, then X∞ lies in the interval [ΔX1 − 1/6, ΔX1 + 1/6]. For the three possible 
choices ΔX1 = −1/3, 0, 1/3 these intervals are mutually exclusive, and this allows us to write the 
CDF C (x) recursively as ∞ ⎧ ⎨ C (3x + 1)/4 for x < −1 

6 
C (x) = 1/

∞
4 + C (3x)/2 for −1 < x < 1 

∞ ⎩ ∞ 6 6 
3/4 + C∞(3x − 1)/4 for 1

6 < x 

This can be easily calculated using a recursive function, and a graph is shown in figure 3. It is also 
interesting to consider the CDF of X� in a coordinate rotated by 45◦. Suppose we consider the ∞
coordinate transformation 

1 
p = + x + y

2 
1 

q = 
2

+ x − y 

Then we find that the walk from starts from (p, q) = (1/2, 1/2) and the PDF of the nth step is 
given by 

1 
pn(r, s) = 

4
(δr,−1/3n + δr,1/3n )(δs,−1/3n + δs,1/3n ). 
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From this from, it is clear that the variables p and q are independent. We see that the Nth step of 
the q component can be written as 

N1
 2In − 1 
3n 

N

QN = +
2 

n=1 

N

= +
2 
− 

3n 

1
 1
 2In 

3n 
n=1 n=1 

N� 

3 =1n

1 1 1 − 1 2In 

3n 
3N += 

2 
− 

3 11 −


N

3n 

� 

=1n

1

= +

3N+1 

2In 

where the IN are independent random variables that take values of 0 and 1 with equal probability, 
as in the previous section. In the limit as N →∞, we obtain 

N


∞ 2n .

n=1 

In
Q =


Thus, the expansion in base-3 of R is∞ 

Q = 0.(2I1)(2I2)(2I3)(2I4)(2I5)(2I6) . . . ∞ 

and hence every possible number whose base-3 expansion contains only 0’s and 2’s with no 1’s 
occurs with equal probability. The numbers which satisfy this property form the Cantor set, a well 
known fractal distribution that can be obtained by taking the unit interval, removing the middle 
third, and then recursively removing the third of each new interval. The cumulative distribution 
can be written as 

C
∞(q) =


⎧⎨ ⎩


C (3q)/2 for q < 1 
∞ 3

21/2 for 1
3 < q < 3 

C∞(3q − 2)/2 + 1/2 for 2
3 < q. 

This is referred to as the Cantor function and is shown in figure 4. It is a type of function referred 
to as “Devil’s staircase”. A function f(x) is a Devil’s staircase on the interval [a, b] if it satisfies the 
following properties: 

• f(x) is continuous on [a, b]. 

• There exists a set N of measure 0 such that for all x outside of N , f �(x) exists and is zero. 

• f(x) in nondecreasing on [a, b]. 

• f(a) < f(b). 
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2.4 Other values of a 

Figure 5 shows the PDF of the decaying walk for twelve different values of a. As a increases, we 
see a progression from a sparse PDF (similar to a Cantor set), through a uniform PDF for a = 0.5, 
to a PDF approaching a Gaussian as a approaches 1. For the case when a = 2−1/2, we can write 
the random variable as 

X� = 
∞

In 
∞ 2n/2 

n=1 

Where the I� 
n take values (1, 0), (−1, 0), (0, 1), and (0, −1) with a quarter probability each. This 

can be rewritten as 

�
√

2 
∞

I�2m−1 
∞

I�2m
X = +∞ 2m 2m 

m=1 m=1 

= 
√

2Y�1 + Y�0 

where Y�1 and Y�0 are decaying walks with parameter a = 1/2. From part (b), we know that these 
are uniformly distributed on the region |x| + |y| < 1, which allows us to easily construct an analytic 
solution to the resultant PDF as a convolution two simple PDFs. Similarly, we have 

3

X� = 2i/4Y�i for a = 2−1/4 
∞ 

i=0 

7

X� = 2i/8Y�i for a = 2−1/8 
∞ 

i=0 

where the Y�i are all decaying walks with parameter a = 1/2; again, this easily allows us to construct 
the resultant PDF as a convolution of a finite number of simple PDFs. 

Figure 5 also shows the PDF for the case for when a is equal to the golden mean, (
√

5 − 1)/2. 
For this value, 1 − a = a2, and this special relationship results in sections of the PDF appearing 
self-similar. 

Shock structure 

We are interested in finding a traveling wave solution c(x, t) = f(x − vt) of Burgers’ equation 

ct + ccx = Dcxx 

which satisfies the boundary conditions c(−∞, t) = c− and c(∞, t) = c+. Writing z = x − vt, we 
find that f(z) satisfies 

(−v + f)f � = Df �� 

which can be integrated to obtain 
f2 

−vf +
2

= Df � + A 

for some constant A. Applying the boundary conditions, and assuming f �(z) → 0 as z → ±∞, we 
find that 

2c
−vc− + 2

− = A 

2


−vc+ + 
c+ = A

2 
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Figure 5: Plots of the PDF of the decaying random walk for twelve different values of a. For each 
graph, 5 × 108 trials were performed. The color scheme goes from white (zero probability density), 
through purple and blue, to black (high probability density). 
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from which we find that the velocity must satisfy 

2v(c+ − c ) = (c 2+ − c 2 )− −

v = 
c+ + c− 

.
2 

From this, we find that 
A = − 

c+c−
2 

and hence f must satisfy 
(c+c−)f − f2 + 2Df � = c+c−. 

We can now apply separation of variables to obtain 

2D df 
= dz 

f2 �− (c+ + c−) + c+c− �
2D df 

= dz � � 
(f − c+)(f − c−�) 

2D df df df 
c− − c+ 

−
f − c+ 

− 
c− − f 

= z + k 

2D 
(− log(f − c+) + log(c− − f)) = z + k. 

c− − c+ 

The variable k corresponds to a translation and does not affect the form of the function; it is 
convenient to set k = 0. Then we find 

cc− − f −−c+ 
= e 2D z 

f − c+ 

c− − f = fe 
c−

2

−
D

c+ z − c+e 
c−

2

−
D

c+ z 

and hence 

c−−c+ z 

f(z) = 
c− + c+

c

e 
−−c

2

+ 

D 

z1 + e 2D � c � 

= 
c− + c+ + 

c− − c+ 1 − e 
−
2

−
D

c+ z 

c2 2 1 + e 
−
2

−
D

c+ z 

= 
c− + c+ + 

c− − c+ tanh 
c+ − c− 

z .
2 2 4D 

4 Discrete versus continuous models with nonlinear drift 

Appendices B and C provide C++ codes to simulate the nonlinear drift problem for models A and 
B respectively. These codes follow an approach very similar to that stated in the problem. The 
largest difference is in the application of the boundary conditions. We assume that the density of 
particles to the left of the simulation has a constant value of ρmax/4. If we take an interval of finite 
length λ then the number of particles in this region should follow a Poisson distribution with mean 
ρmaxλ/4. Similarly, to the right of the simulation, the density is assumed to have constant value of 
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3ρmax/4, and the number of particles in an interval of length λ follows a Poisson distribution with 
mean 3ρmaxλ/4. 

For model A, our steps take the form u(ρ)τ ±
√

2Dτ , and for the parameters in this question, 
the diffusive term is significantly larger than the drift. A hypothetical particle to the left of the 
simulation region could enter the simulation region if it was in the interval −L −

√
2Dτ − u(ρ)τ < 

x < −L, and if it took a step to the right. Since the chance of stepping right is exactly 1/2, it was 
chosen to introduce particles according to a Poisson process with mean 

ρmax 1 � 
u(ρmax/4)τ + 

√
2Dτ 

� 

4 
× 

2 
× 

into the interval −L < x < −L + 
√

2Dτ + u(ρmax/4). A similar analysis shows that at the right 
edge, particles need to be introduced at a rate of 

3ρmax 1 � � 

4 
× 

2 
×

√
2Dτ − u(3ρmax/4)τ 

into the interval L −
√

2Dτ + u(3ρmax/4) < x < L. For model B, assuming that the ρ is roughly 
constant near the boundary, and thus ρx is roughly zero, particles take steps of size u(ρ)τ . Thus we 
need to introduce no particles at the right boundary, and particles at a rate of u(ρmax/4)τρmax/4 
at the left boundary. 

When calculating the estimates of ρ and ρx at a point p in the interval, we make use of the 
prescription given in the question. ρ is calculated by looking at dividing the number of particles in 
the range p − l < x < p + l by 2l. ρx is calculated by finding the difference between the number of 
particles in the regions p − l < x < p and p < x < p + l and dividing by l2 . If any of these counting 
regions overlap with the boundary, say by an amount δ, then we make an additional contribution 
to the density of ρδ. 

Figures 6 and 7 show simulation output for the two models. In both cases, we see a good 
agreement with the predicted result, although there are some discrepancies. After many timesteps, 
particularly for model A, there is a tendency for the standing wave to drift to the right. A more 
careful treatment of the boundary conditions may solve this. 

Model B works surprisingly well. The presence of the ρx/ρ term causes the particles to dis
tribute themselves very evenly over the simulation region, meaning that smooth density plots are 
possible even over a short number of iterations. Unfortunately, the simple boundary condition for 
introduction of particles at the left side appears not to be sufficient. If the density close to the 
left simulation edge grows above ρmax/4, then the particles will not move away from the edge fast 
enough to balance the rate of particle introduction, causing some degree of positive feedback. This 
could be fixed by making the particle introduction rate dependent on the density of particles close 
to the left edge. 

To investigate these models further, a more advanced C++ code was written which can efficiently 
handle much larger numbers of particles, which is given in appendix D. Rather than having a single 
array for the walker positions, walkers are binned depending on their x position. In order to 
calculate the estimates for ρ over an interval, it is only necessary to scan the particles in the bins 
which overlap the interval. Furthermore, if a bin lies wholly within the interval, one just needs to 
add the total number of particles in that bin to the calculation of ρ. These speedups effectively 
reduce the computations of ρ at each step from an O(N2) calculation to an O(N) calculation, 
allowing for many thousands of particles to be simulated. 

The simulation results show some interesting behaviour. While the predicted curves frequently 
follow the hyperbolic tangent form in accordance with the answer, we also see transients in the 
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Figure 6: Simulation output for model A of the nonlinear drift problem, compared to the theoretical 
curve. The simulation results are time-averaged from the 100th iteration to the 5100th iteration. 

density profile forming at the top of the standing wave. These tend to grow and then dissipate; an 
example is shown in figure 8. 

A C++ code for calculating the decaying random walk 

This code simulates 105 walkers from the decaying PDF. The code receives the value of a as the 
first input from the command line, and calculates the number of steps that must be computed in 
order for the final step to be of size 10−5 . The code prints a list of X� points to the standard ∞
output. 

#include <cstdio> 
#include <iostream> 
#include <cmath> 
using namespace std; 

const int trials=100000;

const float tol=0.00001;


int main (int argc, char ∗ argv[]) {
float a=atof(argv[1]),x,y,s;int i,j,k,r;

k=int (log(tol)/log(a)+1);

for(i=0;i <trials;i++) {

x=y=0;s=a;

for (j=0;j <k;j++) {

r=rand()%4;

if (r >1) x+=r==2?−s:s; 
else y+=r ==0?−s:s; 
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Figure 7: Simulation output for model B of the nonlinear drift problem, compared to the theoretical 
curve. The simulation results are time-averaged from the 100th iteration to the 400th iteration. 

s∗=a; 
}
cout << i << " " << x << " " << y << endl; 

}
} 

B Simple C++ code for simulating model A 

#include <string> 
#include <iostream> 
#include <cstdio> 
#include <cmath> 
using namespace std; 

const int iter=5100; //Total number of iterations 
const float dx=0.2; //Width for calculating local density 
const float rhomax=100; //Value of rho max 
const float lrho=25; //Value of rho for x<−4 
const float rrho=75; //Value of rho for x>4 
const float mx=4; //Half−width of simulation region 
const float udt=0.01; //u max∗dt; 
const float ddt=sqrt (0.01∗2/4); //sqrt(2∗D∗dt); 
const int blocks=40; //Number of blocks to save out 

const float pi=3.1415926535897932384626433832795;
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Figure 8: A transient in the density profile, occurring in a much larger version of the simulation. 
At approximately 1000 iterations a large peak is seen at the top of the standing wave but this 
dissipates as the simulation progresses. 

const int lwalk=int(mx ∗lrho); //Total initial walkers on LHS 
const int twalk=int(mx ∗(lrho+rrho)); //Total initial walkers 
const float lspeed=udt ∗(1−lrho/rhomax)+ddt; 
const float rspeed=ddt −udt∗(1−rrho/rhomax); 
const float lrate =0.5∗lspeed∗lrho; //L. walker intro rate 
const float rrate =0.5∗rspeed∗rrho; //R. walker intro rate 
const int mem=twalk ∗2; //Total memory 
const float isp=float(blocks )/(2∗mx); //Inverse block spacing 

inline float rnd() {return (float(rand())+0.5)/ RAND MAX;}
inline int poisson(float l) {

if (l >20) {
int r=int(sqrt (−2∗log(rnd())∗l)∗cos(2∗pi∗rnd())+0.5+l); 
return r >0?r:0; 

} else {
double a=rnd ()∗exp(l)−1,b=1;int r=0;

while(a >0) {a−=b∗=l/++r;}

return r;


}
} 

int main() {
int a=0,i,j=0,t;float w[mem],v[mem],as[blocks],r,x; 
while(j ++<lwalk) w[a++]=−mx∗rnd(); 
while(j ++<twalk) w[a++]=mx∗rnd(); 
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for(i=0;i <blocks;i++) as[i]=0;

for(t=0;t <iter;t++) {


for(i=0;i <a;i++) {
j=int((w[i]+mx )∗isp); 
if (j >=0&&j<blocks&&t>100) as[j]++; 
r=w[i]<dx−mx?lrho∗(dx−mx−w[i]):0; 
r+=w[i]>mx−dx?rrho∗(w[i]−mx+dx):0; 
for(j=0;j <a;j++) {

if (abs(w[i ]−w[j])<dx) r++; 
}
r/=2∗dx; 
v[i]=udt∗(1−r/rhomax)+(rand()%2==1?ddt:−ddt); 

}
i=0;

while(i <a) {


if (abs(w[i]+=v[i ])>mx) {
v[i]=v[a]; 
w[i]=w[−−a]; 

}
else i++;


}
j=poisson(lrate);

for(i=0;i <j;i++) w[a++]=lspeed∗rnd()−mx;

j=poisson(rrate);

for(i=0;i <j;i++) w[a++]=mx−rspeed∗rnd();


}
for(i=0;i <blocks;i++) {


r=(float(i)+0.5)/isp −mx;

cout << r << " "


<< float(as[i ])∗blocks/2/mx/(iter−100) << endl; 
}

} 

C Simple C++ code for simulating model B 

#include <string> 
#include <iostream> 
#include <cstdio> 
#include <cmath> 
using namespace std; 

const int iter=400; //Total number of iterations 
const float dx=0.2; //Width for calculating local density 
const float rhomax=100; //Value of rho max 
const float lrho=25; //Value of rho for x<−4 
const float rrho=75; //Value of rho for x>4 
const float mx=4; //Half−width of simulation region 
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const float udt=0.01; //u max∗dt;

const float ddt=0.0025; //D ∗dt;

const int blocks=40; //Number of blocks to save out


const float pi=3.1415926535897932384626433832795; 
const int lwalk=int(mx ∗lrho); //Total initial walkers on LHS 
const int twalk=int(mx ∗(lrho+rrho)); //Total initial walkers 
const float lspeed=udt ∗(1−lrho/rhomax); 
const float lrate=lspeed ∗lrho; //L. walker intro rate 
const int mem=twalk ∗2; //Total memory 
const float isp=float(blocks)/mx ∗0.5; //Inverse block spacing 

inline float rnd() {return (float(rand())+0.5)/ RAND MAX;}
inline int poisson(float l) {

if (l >20) {
int r=int(sqrt (−2∗log(rnd())∗l)∗cos(2∗pi∗rnd())+0.5+l); 
return r >0?r:0; 

} else {
double a=rnd ()∗exp(l)−1,b=1;int r=0;

while(a >0) {a−=b∗=l/++r;}

return r;


}
} 

int main() {
int a=0,i,j=0,t;float w[mem],v[mem],as[blocks],r,s,x; 
while(j ++<lwalk) w[a++]=−mx∗rnd(); 
while(j ++<twalk) w[a++]=mx∗rnd(); 
for(i=0;i <blocks;i++) as[i]=0; 
for(t=0;t <iter;t++) {

for(i=0;i <a;i++) {
j=int((w[i]+mx )∗isp); 
if (j >=0&&j<blocks&&t>100) as[j]++; 
s=r=w[i]<dx−mx?lrho∗(dx−mx−w[i]):0; 
r+=w[i]>mx−dx?rrho∗(w[i]−mx+dx):0; 
for(j=0;j <a;j++) {

x=w[j]−w[i]; 
if (x >−dx) {

if (x <dx) {
r++;if (x <0) s++; 

}
}

}
s=(r−2∗s)/(dx∗dx);

r/=2∗dx;

v[i]=udt∗(1−r/rhomax)−ddt∗s/r;
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}
i=0;

while(i <a) {


if (abs(w[i]+=v[i ])>mx) {
v[i]=v[a]; 
w[i]=w[−−a]; 

}
else i++;


}
j=poisson(lrate);

for(i=0;i <j;i++) w[a++]=lspeed∗rnd()−mx;


}
for(i=0;i <blocks;i++) {


r=(float(i)+0.5)/isp −mx;

cout << r << " "


<< float(as[i ])∗blocks/2/mx/(iter−100) << endl; 
}

} 

D Advanced C++ code for simulating the nonlinear drift model 

#include <string> 
#include <iostream> 
#include <cstdio> 
#include <cmath> 
using namespace std; 

const int iter=20000; //Total number of iterations 
const int bl=3200; //Number of memory blocks 
const float dx=0.1; //Width for calculating local density 
const float rhomax=40000; //Value of rho max 
const float lrho=10000; //Value of rho for x<−4 
const float rrho=30000; //Value of rho for x>4 
const float mx=4; //Half−width of simulation region 
const float udt=0.01; //u max∗dt; 
const float ddt=0.05; //D∗dt; 
const int smooth=40; //Smoothing factor 

const float pi=3.1415926535897932384626433832795; 
const int lwalk=int(mx ∗lrho); //Total initial walkers on LHS 
const int twalk=int(mx ∗(lrho+rrho)); //Total initial walkers 
const float ibs=bl/mx/2; //Inverse block spacing 
const float lspeed=udt ∗(1−lrho/rhomax)+ddt; 
const float rspeed=ddt −udt∗(1−rrho/rhomax); 
const float lrate =0.5∗lspeed∗lrho; //L. walker intro rate 
const float rrate =0.5∗rspeed∗rrho; //R. walker intro rate 
const int res=bl/smooth; //Number of data points to save 
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const int mem=int(rhomax ∗2∗2∗mx/float(bl)); //Memory estimate 
float w[bl][mem]; //Walker positions 
float v[bl][mem]; //Walker velocities 
int a[bl]; //Tally for each memory block 

inline int b(float x) {return int((mx+x )∗ibs+10)−10;}
inline void put(float x) {int i=b(x); 

if(i <0 | |i>=bl) {cout << "∗∗∗" << i << " " << x << endl;return ;}
w[i][a[i]++]=x; 

} 

inline float rnd() {return (float(rand())+0.5)/ RAND MAX;}
void blocks() { 

for(int i=0;i <bl;i++) cout << a[i] << " "; 
cout << endl; 

}
inline int poisson(float l) {

if (l >25) {
int r=int(sqrt (−2∗log(rnd())∗l)∗cos(2∗pi∗rnd())+0.5+l); 
return r >0?r:0; 

} else {

double a=rnd ()∗exp(l)−1,b=1;int r=0;

while(a >0) {a−=b∗=l/++r;}

return r;


}
} 

inline float rho(float x) {
float lx=x −dx,rx=x+dx,s; 
int l=b(lx),r=b(rx),m; 
if (l==r) {

s=0;for(m=0;m <a[l];m++) {
if (w[l][m ]>lx&&w[l][m]<rx) s+=1; 
return s /(2∗dx); 

}

}

if (l <0) {l=0;s=lrho∗(−mx−lx);}
else { 

s=0;for(m=0;m <a[l];m++) if(w[l][m ]>lx) s+=1;l++; 
}
if (r >=bl) {r=bl−1;s+=rrho∗(rx−mx);}
else { 

for(m=0;m <a[r];m++) if(w[r][m ]<rx) s+=1;r−−; 
}
while (l <r) s+=float(a[l++]);

return s /(2∗dx);
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} 

int main() {
int ∗as[iter]; 
int i,j=0,k,t;float r,s,x;for (i=0;i <bl;i++) a[i]=0; 
while(j ++<lwalk) put(−mx∗rnd()); 
while(j ++<twalk) put(mx∗rnd()); 
for(t=0;t <iter;t++) {

as[t]=new int[res]; 
for(i=0;i <res;i++) as[t][i]=0; 
for(i=0;i <bl;i++) {

as[t][i/smooth]+=a[i]; 
for(j=0;j <a[i];j++) v[i][j]=udt∗(1−rho(w[i][j]) 

/rhomax)+(rand()%2==1?ddt:−ddt); 
}
for(i=0;i <bl;i++) {


j=0;

while(j <a[i]) {


x=w[i][j]+v[i][j]; 
if ((k=b(x))==i) w[i][j++]=x; 
else { 

w[i][j]=w[i][−−a[i]]; 
v[i][j]=v[i][a[i]]; 
if(k >=0&&k<bl) {

w[k][a[k]]=x;

v[k][a[k]++]=0;


}
}

}
}
j=poisson(lrate);k=poisson(rrate); 
for(i=0;i <j;i++) put(lspeed∗rnd()−mx); 
for(i=0;i <k;i++) put(mx−rspeed∗rnd()); 

}
for(i=0;i <res;i++) {

cout << mx∗(2∗(float(i)+0.5)/res −1); 
for(t=0;t <iter;t++) cout << " " << as[t][i]; 
cout << endl; 

}
} 


