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1. Introduction, Notation 
We consider fluid systems dominated by the influence of interfacial tension. The roles of curvature pressure 
and Marangoni stress are elucidated in a variety of situtations. Particular attention will be given to the 
dynamics of drops and bubbles, soap films and minimal surfaces, wetting phenomena, water-repellency, 
surfactants, Marangoni flows, capillary origami and contact line dynamics. Theoretical developments will 
be accompanied by classroom demonstrations. The role of surface tension in biology will be highlighted. 

Notation 

Nomenclature: σ denotes surface tension (at fluid-gas interface) 
γ denotes interfacial tension (at fluid-fluid or fluid-solid interface). 

Note on units: we will use predominantly cgs system. 
−2Unit of force: 1 dyne = 1 g cm s = 10−5N as the cgs unit of force, roughly the weight of 1 mosquito.
 

Pressure: 1 atm ≈ 100kPa = 105N/m2=106 dynes/cm2 .
 
Units: [σ]=dynes/cm=mN/m.
 

2
What is an interface?: roughness scale δ, from equality of surface and thermal energy get σδ ∼kT⇒ 

δ ∼ (kT/σ)1/2 . If δ ≪ scales of experiment, can speak of a smooth interface. 

1.1 Suggested References 

While this list of relevant textbooks is far from complete, we include it as a source of additional reading 
for the interested student. 

• Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves 

by P.G. de Gennes, F. Brochard-Wyart and D. Quéré. Springer Publishing. 
A readable and accessible treatment of a wide range of capillary phenomena. 

• Molecular theory of capillarity 

by J.S. Rowlinson and B. Widom. Dover 1982. 

• Intermolecular and surface forces 

by J. Israelachvili. Academic Press, 2nd edition 1995. 

• Multimedia Fluid Mechanics 

Cambridge University Press, Ed. Bud Homsy. 
A DVD with an extensive section devoted to capillary effects. Relevant videos will be used throughout 
the course. 
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2. Definition and Scaling of Surface 

Tension 

These lecture notes have been drawn from many sources, including textbooks, journal articles, and lecture 
notes from courses taken by the author as a student. These notes are not intended as a complete discussion 
of the subject, or as a scholarly work in which all relevant references are cited. Rather, they are intended as 
an introduction that will hopefully motivate the interested student to learn more about the subject. Topics 
have been chosen according to their perceived value in developing the physical insight of the students. 

2.1 History: Surface tension in antiquity 

Hero of Alexandria (10 AD - 70 AD) Greek mathematician and engineer, “the greatest 
experimentalist of antiquity”. Exploited capillarity in a number of inventions described in his 
book Pneumatics, including the water clock. 

Pliny the Elder (23 AD - 79 AD) Author, natural philosopher, army and naval commander 
of the early Roman Empire. Described the glassy wakes of ships. “True glory comes in doing 

what deserves to be written; in writing what deserves to be read; and in so living as to make 

the world happier.” “Truth comes out in wine”. 

Leonardo da Vinci (1452-1519) Reported capillary rise in his notebooks, hypothesized that 
mountain streams are fed by capillary networks. 

Francis Hauksbee (1666-1713) Conducted systematic investigation of capillary rise, his 
work was described in Newton’s Opticks, but no mention was made of him. 

Benjamin Franklin (1706-1790) Polymath: scientist, inventor, politician; examined the 
ability of oil to suppress waves. 

Pierre-Simon Laplace (1749-1827) French mathematician and astronomer, elucidated the 
concept and theoretical description of the meniscus, hence the term Laplace pressure. 

Thomas Young (1773-1829) Polymath, solid mechanician, scientist, linguist. Demonstrated 
the wave nature of light with ripple tank experiments, described wetting of a solid by a fluid. 

Joseph Plateau (1801-1883) Belgian physicist, continued his experiments after losing his 
sight. Extensive study of capillary phenomena, soap films, minimal surfaces, drops and bubbles. 
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2.2. Motivation: Who cares about surface tension? Chapter 2. Definition and Scaling of Surface Tension 

2.2 Motivation: Who cares about surface tension? 

As we shall soon see, surface tension dominates gravity on a scale less than the capillary length (roughly 
2mm). It thus plays a critical role in a variety of small-scale processes arising in biology, environmental 
science and technology. 

Biology 

•	 all small creatures live in a world dominated 
by surface tension 

•	 surface tension important for insects for many 
basic functions 

•	 weight support and propulsion at the water 
surface 

•	 adhesion and deadhesion via surface tension 

•	 the pistol shrimp: hunting with bubbles 

•	 underwater breathing and diving via surface 
tension 

•	 natural strategies for water-repellency in 
plants and animals 

•	 the dynamics of lungs and the role of surfac
tants and impurities 

Figure 2.1: The diving bell spider 

Geophysics and environmental science 

•	 the dynamics of raindrops and their role in the 
biosphere 

•	 most biomaterial is surface active, sticks to the 
surface of drops / bubbles 

•	 chemical, thermal and biological transport in 
the surf zone 

•	 early life: early vessicle formation, confine
ment to an interface 

•	 oil recovery, carbon sequestration, groundwa
ter flows 

•	 design of insecticides intended to coat insects, 
leave plant unharmed 

•	 chemical leaching and the water-repellency of 
soils 

•	 oil spill dynamics and mitigation 

•	 disease transmission via droplet exhalation 

•	 dynamics of magma chambers and volcanoes 

•	 the exploding lakes of Cameroon 

Technology 

•	 capillary effects dominant in microgravity set
tings: NASA 

•	 cavitation-induced damage on propellers and 
submarines 

•	 cavitation in medicine: used to damage kidney 
stones, tumours ... 

•	 design of superhydrophobic surfaces e.g. self-
cleaning windows, drag-reducing or erosion-
resistant surfaces 

•	 lab-on-a-chip technology: medical diagnostics, 
drug delivery 

•	 microfluidics: continuous and discrete fluid 
transport and mixing 

•	 tracking submarines with their surface signa
ture 

•	 inkjet printing 

•	 the bubble computer 
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2.3. Surface tension: a working definition Chapter 2. Definition and Scaling of Surface Tension 

Figure 2.2: a) The free surface between air and water at a molecular scale. b) Surface tension is analogous 
to a negative surface pressure. 

2.3 Surface tension: a working definition 

Discussions of the molecular origins of surface or interfacial tension may be found elsewhere (e.g. Is

raelachvili 1995, Rowlinson & Widom 1982 ). Our discussion follows that of de Gennes, Brochard-Wyart 

& Quéré 2003. 
Molecules in a fluid feel a mutual attraction. When this attractive force is overcome by thermal 

agitation, the molecules pass into a gaseous phase. Let us first consider a free surface, for example 
that between air and water (Fig. 2.2a). A water molecule in the fluid bulk is surrounded by attractive 
neighbours, while a molecule at the surface has a reduced number of such neighbours and so in an 
energetically unfavourable state. The creation of new surface is thus energetically costly, and a fluid 
system will act to minimize surface areas. It is thus that small fluid bodies tend to evolve into spheres; 
for example, a thin fluid jet emerging from your kitchen sink will generally pinch off into spherical drops 
in order to minimize the total surface area (see Lecture 5). 

If U is the total cohesive energy per molecule, then a molecule at a free surface will lose U/2 relative to 
molecules in the bulk. Surface tension is a direct measure of this energy loss per unit area of surface. If the 
characteristic molecular dimension is R and its area thus R2, then the surface tension is σ ∼ U/(2R)2 . Note 
that surface tension increases as the intermolecular attraction increases and the molecular size decreases. 
For most oils, σ ∼ 20 dynes/cm, while for water, σ ∼ 70 dynes/cm. The highest surface tensions are 
for liquid metals; for example, liquid mercury has σ ∼ 500 dynes/cm. The origins of interfacial tension 
are analogous. Interfacial tension is a material property of a fluid-fluid interface whose origins lie in 
the different energy per area that acts to resist the creation of new interface. Fluids between which no 
interfacial tension arises are said to be miscible. For example, salt molecules will diffuse freely across a 
boundary between fresh and salt water; consequently, these fluids are miscible, and there is no interfacial 
tension between them. Our discussion will be confined to immiscible fluid-fluid interfaces (or fluid-gas 
surfaces), at which an effective interfacial (or surface) tension acts. 

Surface tension σ has the units of force/length or equivalently energy/area, and so may be thought 
of as a negative surface pressure, or, equivalently, as a line tension acting in all directions parallel to the 
surface. Pressure is generally an isotropic force per area that acts throughout the bulk of a fluid: small 
surface element dS will feel a total force p(x)dS owing to the local pressure field p(x). If the surface S is 
closed, and the pressure uniform, the net pressure force acting on S is zero and the fluid remains static. 
Pressure gradients correspond to body forces (with units of force per unit volume) within a fluid, and so 
appear explicitly in the Navier-Stokes equations. Surface tension has the units of force per length, and 
its action is confined to the free surface. Consider for the sake of simplicity a perfectly flat interface. A 
surface line element dℓ will feel a total force σdℓ owing to the local surface tension σ(x). If the surface 
line element is a closed loop C, and the surface tension uniform, the net surface tension force acting on 
C is zero, and the fluid remains static. If surface tension gradients arise, there may be a net force on the 
surface element that acts to distort it through driving flow. 
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2.4. Governing Equations Chapter 2. Definition and Scaling of Surface Tension 

2.4 Governing Equations 

The motion of a fluid of uniform density ρ and dynamic viscosity µ is governed by the Navier-Stokes 
equations, which represent a continuum statement of Newton’s laws. 

(
∂u 

)

ρ + u · ∇u = −∇p+ F + µ∇2 u (2.1) 
∂t 

∇ · u = 0 (2.2) 

This represents a system of 4 equations in 4 unknowns (the fluid pressure p and the three components of 
the velocity field u). Here F represents any body force acting on a fluid; for example, in the presence of 
a gravitational field, F = ρg where g is the acceleration due to gravity. 

Surface tension acts only at the free surface; consequently, it does not appear in the Navier-Stokes 
equations, but rather enters through the boundary conditions. The boundary conditions appropriate at a 
fluid-fluid interface are formally developed in Lecture 3. We here simply state them for the simple case of 
a free surface (such as air-water, in which one of the fluids is not dynamically significant) in order to get 
a feeling for the scaling of surface tension. The normal stress balance at a free surface must be balanced 
by the curvature pressure associated with the surface tension: 

n · T · n = σ(∇ · n) (2.3) 
[

1 
[

where T = −pI + µ ∇u + (∇u)T
]
= −pI + 2µE is the stress tensor, E = ∇u + (∇u)T

]
is the 

2 
deviatoric stress tensor, and n is the unit normal to the surface. The tangential stress at a free surface 
must balance the local surface tension gradient: 

n · T · t = ∇σ · t (2.4) 

where t is the unit tangent to the interface. 

2.5 The scaling of surface tension 

Fundamental Concept The laws of Nature cannot depend on arbitrarily chosen system of units. Any 
physical system is most succinctly described in terms of dimensionless variables. 

Buckingham’s Theorem For a system withM physical variables (e.g. density, speed, length, viscosity) 
describable in terms of N fundamental units (e.g. mass, length, time, temperature), there are M − N 
dimensionless groups that govern the system. 
E.g. Translation of a rigid sphere through a viscous fluid: 
Physical variables: sphere speed U and radius a, fluid viscosity ν and density ρ and sphere drag D; M = 5. 
Fundamental units: mass M , length L and time T ; N = 3. 
Buckingham’s Theorem: there are M − N = 2 dimensionless groups: Cd = D/ρU2 and Re = Ua/ν. 
System is uniquely determined by a single relation between the two: Cd = F (Re). 
We consider a fluid of density ρ and viscosity µ = ρν with a free surface characterized by a surface tension 
σ. The flow is marked by characteristic length- and velocity- scales of, respectively, a and U , and evolves 
in the presence of a gravitational field g = −gẑ. We thus have a physical system defined in terms of six 
physical variables (ρ, ν, σ, a, U, g) that may be expressed in terms of three fundamental units: mass, length 
and time. Buckingham’s Theorem thus indicates that the system may be uniquely described in terms of 
three dimensionless groups. We choose 

Ua Inertia 
Re = = = Reynolds number (2.5) 

ν Viscosity 

U2 Inertia 
Fr = = = Froude number (2.6) 

ga Gravity 

ρga2 Gravity 
Bo = = = Bond number (2.7) 

σ Curvature 
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2.5. The scaling of surface tension Chapter 2. Definition and Scaling of Surface Tension 

The Reynolds number prescribes the relative magnitudes of inertial and viscous forces in the system, 
while the Froude number those of inertial and gravity forces. The Bond number indicates the relative 
importance of forces induced by gravity and surface tension. Note that these two forces are comparable 

1/2
when Bo = 1, which arises at a lengthscale corresponding to the capillary length: ℓc = (σ/(ρg)) . For 
an air-water surface, for example, σ ≈ 70 dynes/cm, ρ = 1g/cm3 and g = 980 cm/s2, so that ℓc ≈ 2mm. 
Bodies of water in air are dominated by the influence of surface tension provided they are smaller than the 
capillary length. Roughly speaking, the capillary length prescribes the maximum size of pendant drops 
that may hang inverted from a ceiling, water-walking insects, and raindrops. Note that as a fluid system 
becomes progressively smaller, the relative importance of surface tension over gravity increases; it is thus 
that surface tension effects are critical in many in microscale engineering processes and in the lives of 
bugs. 

Finally, we note that other frequently arising dimensionless groups may be formed from the products 
of Bo, Re and Fr: 

ρU2a Inertia 
We = = = Weber number (2.8) 

σ Curvature 
ρνU Viscous 

Ca = = = Capillary number (2.9) 
σ Curvature 

The Weber number indicates the relative magnitudes of inertial and curvature forces within a fluid, and 
the capillary number those of viscous and curvature forces. Finally, we note that if the flow is marked by 
a Marangoni stress of characteristic magnitude Δσ/L, then an additional dimensionless group arises that 
characterizes the relative magnitude of Marangoni and curvature stresses: 

aΔσ Marangoni 
Ma = = = Marangoni number (2.10) 

Lσ Curvature 

We now demonstrate how these dimensionless groups arise naturally from the nondimensionalization of 
Navier-Stokes equations and the surface boundary conditions. We first introduce a dynamic pressure: 
pd = p− ρg · x, so that gravity appears only in the boundary conditions. We consider the special case of 
high Reynolds number flow, for which the characteristic dynamic pressure is ρU2 . We define dimensionless 
primed variables according to: 

a
′ ′ ′ ′ u = Uu , pd = ρU2 pd , x = ax , t = t , (2.11) 

U 

where a and U are characteristic lenfth and velocity scales. Nondimensionalizing the Navier-Stokes equa
tions and appropriate boundary conditions yields the following system: 

(
∂u ′ 

)
1

′ 
∇ 

′ ′ ′ 
∇ ′2 ′ ′ + u · u = −∇pd + u , ∇ 

′ 
· u = 0 (2.12) 

∂t′ Re 

The normal stress condition assumes the dimensionless form: 

1 2 1
′ ′ E ′ ∇ 

′ 
−pd + z + n · · n = · n (2.13) 

Fr Re We 

The relative importance of surface tension to gravity is prescribed by the Bond number Bo, while that 
of surface tension to viscous stresses by the capillary number Ca. In the high Re limit of interest, the 
normal force balance requires that the dynamic pressure be balanced by either gravitational or curvature 
stresses, the relative magnitudes of which are prescribed by the Bond number. 

The nondimensionalization scheme will depend on the physical system of interest. Our purpose here 
was simply to illustrate the manner in which the dimensionless groups arise in the theoretical formulation 
of the problem. Moreover, we see that those involving surface tension enter exclusively through the 
boundary conditions. 
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2.6. A few simple examples Chapter 2. Definition and Scaling of Surface Tension 

Figure 2.3: Surface tension may be measured by drawing a thin plate from a liquid bath. 

2.6 A few simple examples 

Measuring surface tension. Since σ is a tensile force per unit length, it is possible to infer its value by 
slowly drawing a thin plate out of a liquid bath and measure the resistive force (Fig. 2.3). The maximum 
measured force yields the surface tension σ. 

Curvature/ Laplace pressure: consider an oil drop in water (Fig. 2.4a). Work is required to increase 
the radius from R to R+ dR: 

dW = −podVo − pwdVw + γowdA (2.14) 
' v ' ' v ' 

mech. E surface E 

where dVo = 4πR2dR = −dVw and dA = 8πRdR. 
For mechanical equilibrium, we require 
dW = −(p0 − pw)4πR2dR + γow8πRdR = 0 ⇒ 
ΔP = (po − pw) = 2γow/R. 

Figure 2.4: a) An oil drop in water b) When a soap bubble is penetrated by a cylindrical tube, air is 
expelled from the bubble by the Laplace pressure. 
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2.6. A few simple examples	 Chapter 2. Definition and Scaling of Surface Tension 

Note: 

1. Pressure inside a drop / bubble is higher than that outside ΔP ∼ 2γ/R ⇒ smaller bubbles have 
higher Laplace pressure ⇒ champagne is louder than beer. 
Champagne bubbles R ∼ 0.1mm, σ ∼ 50 dynes/cm, ΔP ∼ 10−2 atm. 

4σ2. For a soap bubble (2 interfaces) ΔP = , so for R ∼ 5 cm, σ ∼ 35dynes/cm have ΔP ∼ 3×10−5atm. R 

More generally, we shall see that there is a pressure jump across any curved interface: 

Laplace pressure Δp = σ∇ · n. 
Examples: 

1.	 Soap bubble jet - Exit speed (Fig. 2.4b) 
( )1/2 ( )

4σ 4×70dynes/cm Force balance: Δp = 4σ/R	 ∼ ∼ 300cm/s ∼ ρairU2 
⇒ U ∼ ρair R 0.001g/cm3·3cm

2.	 Ostwald Ripening: The coarsening of foams (or emulsions) owing to diffusion of gas across inter
faces, which is necessarily from small to large bubbles, from high to low Laplace pressure. 

23.	 Falling drops: Force balance Mg ∼ ρairU2a gives 
v

fall speed U ∼ ρga/ρair.
 
drop integrity requires ρairU

2 
∼ ρga < σ/a
 

v

raindrop size a < ℓc = σ/ρg ≈ 2mm.
 
If a drop is small relative to the capillary length, σ maintains it against the destabilizing influence
 
of aerodynamic stresses.
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3. Wetting 
Puddles. What sets their size?
 
Knowing nothing of surface chemistry, one anticipates that Laplace pressure balances hydrostatic pressure
 

J

if σ/H ≥ ρgH ⇒ H < ℓc = σ/ρg = capillary length. 

Note: 

1. Drops with R < ℓc remain heavily spherical 

2. Large drops spread to depth H ∼ ℓc so that 
Laplace + hydrostatic pressures balance at the 
drop’s edge. A volume V will thus spread 
to a radius R s.t. πR2ℓc = V , from which 

1/2
R = (V/πℓc) . 

3. This is the case for H2O on most surfaces, 
Figure 3.1: Spreading of drops of increasing size. where a contact line exists. 

Note: In general, surface chemistry can dominate and one need not have a contact line. 

More generally, wetting occurs at fluid-solid contact. Two possibilities exist: partial wetting or total
 
wetting, depending on the surface energies of the 3 interfaces (γLV , γSV , γSL).
 

Now, just as σ = γLV is a surface energy per area or tensile force per length at a liquid-vapour surface,
 
γSL and γSV are analogous quantities at solid-liquid and solid-vapour interfaces.
 
The degree of wetting determined by spreading parameters:
 

S = [Esubstrate]dry − [Esubstrate]wet = γSV − (γSL + γLV ) (3.1) 

where only γLV can be easily measured.
 
Total Wetting: S > 0 , θe = 0 liquid spreads completely in order to minimize its surface energy. e.g.
 
silicon on glass, water on clean glass.
 

Note: Silicon oil is more likely to spread than H2O since σw ∼ 70 dyn/cm > σs.o. ∼ 20 dyn/cm. Final
 
result: a film of nanoscopic thickness resulting from competition between molecular and capillary forces.
 

Partial wetting: S < 0, θe > 0. In absence of 
g, forms a spherical cap meeting solid at a con
tact angle θe. A liquid is “wetting” on a particular 
solid when θe < π/2, non-wetting or weakly wetting 
when θe > π/2. For H2O, a surface is hydrophilic 
if θe < π/2, hydrophobic if θe > π/2 and superhy
drophobic if θe > 5π/6. 

Figure 3.2: The same water drop on hydrophobic 
and hydrophilic surfaces. 

Note: if g = 0, drops always take the form of a spherical cap ⇒ flattening indicates the effects of gravity. 

11 



4. Young’s Law with Applications
 
Young’s Law: what is the equilibrium contact angle θe ? Horizontal force balance at contact line: 
γLV cos θe = γSV − γSL 

γSV − γSL S 
cos θe = = 1 + (Y oung 1805) (4.1) 

γLV γLV 

Note: 

1. When S ≥ 0, cos θe ≥ 1 ⇒ θe undefined and
 
spreading results.
 

2. Vertical force balance not satisfied at contact
 
line ⇒ dimpling of soft surfaces.
 
E.g. bubbles in paint leave a circular rim. 

3. The static contact angle need not take its equi
librium value ⇒ there is a finite range of pos
sible static contact angles.
 

Figure 4.1: Three interfaces meet at the contact line. Back to Puddles: Total energy: 

1 V 1 
E = (γSL − γSV )A+ γLV A+ ρgh2A = −S + ρgV h (4.2) 

2 h 2 v  
 v  

surface energy 
grav. pot. energy 

dE 1 1Minimize energy w.r.t. h: = SV h
1 
2 + ρgV = 0 when −S/h2 = ρg ⇒dh 2 2 J

−2S e 
J

h0 = ρg = 2ℓc sin 
θ
2 gives puddle depth, where ℓc = σ/ρg. 

Capillary Adhesion: Two wetted surfaces can
 
stick together with great strength if θe < π/2, e.g.
 
Fig. 4.2.
 
Laplace Pressure:
 ( )

1 
− cos θe cos θeΔP = σ ≈ − 2σR H/2 H 

i.e. low P inside film provided θe < π/2. 
cos θeIf H ≪ R, F = πR2 2σ is the attractive force H 

between the plates. 
Figure 4.2: An oil drop forms a capillary bridge 
between two glass plates. 

E.g. for H2O, with R = 1 cm, H = 5 µm and θe = 0, one finds ΔP ∼ 1/3 atm and an adhesive force 
F ∼ 10N , the weight of 1l of H2O.
 

Note: Such capillary adhesion is used by beetles in nature.
 

4.1 Formal Development of Interfacial Flow Problems 

Governing Equations: Navier-Stokes. An incompressible, homogeneous fluid of density ρ and viscosity 
µ = ρν (µ is dynamic and ν kinematic viscosity) acted upon by an external force per unit volume f evolves 
according to 

∇ · u = 0 (continuity) (4.3) 
(
∂u 

)

ρ + u · ∇u = −∇p+ f+ µ∇2 u (Linear momentum conservation) (4.4) 
∂t 
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4.1. Formal Development of Interfacial Flow Problems Chapter 4. Young’s Law with Applications 

This is a system of 4 equations in 4 unknowns (u1, u2, u3, p). These N-S equations must be solved subject
 
to appropriate BCs.
 
Fluid-Solid BCs: “No-slip”: u = Usolid.
 
E.g.1 Falling sphere: u = U on sphere surface, where U is the sphere velocity. 
E.g.2 Convection in a box: u = 0 on the box surface.
 
But we are interested in flows dominated by interfacial effects. Here, in general, one must solve N-S
 
equations in 2 domains, and match solutions together at the interface with appropriate BCs. Difficulty:
 
These interfaces are free to move ⇒ Free boundary problems.
 

Figure 4.4: E.g.4 Water waves at an air-water in
terface. 

Figure 4.3: E.g.3 Drop motion within a fluid. 

Continuity of Velocity at an interface requires that u = û.
 
And what about p ? We’ve seen Δp ∼ σ/R for a static bubble/drop, but to answer this question in
 
general, we must develop stress conditions at a fluid-fluid interface.
 
Recall: Stress Tensor. The state of stress within an incompressible Newtonian fluid is described by
 

1 
[

the stress tensor: T = −pI + 2µE where E = (∇u) + (∇u)T
]
is the deviatoric stress tensor. The 

2 
associated hydrodynamic force per unit volume within the fluid is ∇ · T . 
One may thus write N-S eqns in the form: ρDu = ∇ · T + f = −∇p+ µ∇2u + f.Dt 
Now: Tij = force / area acting in the ej direction on a surface with a normal ei. 

Note: 

1.	 normal stresses (diagonals) T11, T22, T33 in
volve both p and ui
 

2. tangential	 stresses (off-diagonals) T12, T13,
 
etc., involve only velocity gradients, i.e. vis
cous stresses
 

3.	 Tij is symmetric (Newtonian fluids) 

4.	 t(n) = n·T = stress vector acting on a surface
 
with normal n
 

E.g. Shear flow. Stress in lower boundary is tan
gential. Force / area on lower boundary: 

∂uTyx = µ x 
∂y |y=0 = µk is the force/area that acts on 

y-surface in x-direction.
 

Note: the form of T in arbitrary curvilinear coordi- Figure 4.5: Shear flow above a rigid lower bound-

nates is given in the Appendix of Batchelor. ary.
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5. Stress Boundary Conditions 

Today: 

1. Derive stress conditions at a fluid-fluid inter
face. Requires knowledge of T = −pI + 2µE
 

2. Consider several examples of fluid statics 

Recall: the curvature of a string under tension may 
support a normal force. (see right) 

5.1 Stress conditions at a fluid-fluid interface 

We proceed by deriving the normal and tangential stress boundary conditions appropriate at a fluid-fluid 
interface characterized by an interfacial tension σ. 

Figure 5.1: String under tension and the influence 
of gravity. 

Figure 5.2: A surface S and bounding contour C on an interface between two fluids. Local unit vectors 
are n, m and s. 

Consider an interfacial surface S bounded by a closed contour C. One may think of there being a force 
per unit length of magnitude σ in the s-direction at every point along C that acts to flatten the surface S. 
Perform a force balance on a volume element V enclosing the interfacial surface S defined by the contour 
C:     

ρ
Du 

dV = f dV + [t(n) + t̂(n̂)] dS + σs dℓ (5.1) 
Dt S∗V V C 

Here ℓ indicates arc-length and so dℓ a length increment along the curve C.
 
t(n) = n · T is the stress vector, the force/area exerted by the upper (+) fluid on the interface.
 

[
The stress tensor is defined in terms of the local fluid pressure and velocity field as T = −pI+µ ∇u + (∇u)T

]
. 

The stress exerted on the interface by the lower (-) fluid is t̂(n̂) = n̂ · T̂ = −n · T 
[

where T̂ = −p̂I + µ̂ ∇û+ (∇û)T
]
. 

Physical interpretation of terms 
I

ρDu dV : inertial force associated with acceleration of fluid in V
V Dt 

I 
f dV : body forces acting within V 

I
t(n) dS : hydrodynamic force exerted by upper fluid 

S 
I

t̂(n̂) dS : hydrodynamic force exerted by lower fluid 
S 
I

σs dℓ : surface tension force exerted on perimeter. 
C 
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5.1. Stress conditions at a fluid-fluid interface Chapter 5. Stress Boundary Conditions

Now if ǫ is the characteristic height of our volume V and R its characteristic radius, then the accel-
eration and body forces will scale as R2ǫ, while the surface forces will scale as R2. Thus, in the limit of
ǫ→ 0, the latter must balance. ∫

t(n) + t̂(n̂) dS +

∫

σs dℓ = 0 (5.2)
S C

Now we have that
ˆt(n) = n ·T , t̂(n̂) = n̂ ·T = −n ·T (5.3)

Moreover, the application of Stokes Theorem (see below) allows us to write

∫

σs dℓ =
C

∫

∇Sσ − σn (∇S · n) dS (5.4)
S

where the tangential (surface) gradient operator, defined

∂
∇ ∇ ∇S = [I− nn] · = − n (5.5)

∂n

appears because σ and n are only defined on the surface S. We proceed by dropping the subscript s on
∇, with this understanding. The surface force balance thus becomes

∫ (

ˆn ·T− n ·T
)

dS = σ
S

∫

n (∇ · n)−∇σ dS (5.6)
S

Now since the surface S is arbitrary, the integrand must vanish identically. One thus obtains the interfacial
stress balance equation, which is valid at every point on the interface:
Stress Balance Equation

ˆn ·T− n ·T = σn (∇ · n)−∇σ (5.7)

Interpretation of terms:
n ·T stress (force/area) exerted by + on - (will generally have both ⊥ and ‖ components)

ˆn ·T stress (force/area) exerted by - on + (will generally have both ⊥ and ‖ components)
σn (∇ · n) normal curvature force per unit area associated with local curvature of interface, ∇ · n

∇σ tangential stress associated with gradients in σ

Normal stress balance Taking n·(5.7) yields the normal stress balance

ˆn ·T · n− n ·T · n = σ(∇ · n) (5.8)

The jump in the normal stress across the interface is balanced by the curvature pressure.
Note: If ∇ · n = 0, there must be a normal stress jump there, which generally involves both pressure and
viscous terms.

MIT OCW: 18.357 Interfacial Phenomena 15 Prof. John W. M. Bush
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5.2. Appendix A : Useful identity Chapter 5. Stress Boundary Conditions

Tangential stress balance Taking d·(5.7), where d is any linear combination of s and m (any tangent
to S), yields the tangential stress balance at the interface:

ˆn ·T · d− n ·T · d = ∇σ · d (5.9)

Physical Interpretation

• LHS represents the jump in tangential components of the hydrodynamic stress at the interface

• RHS represents the tangential stress (Marangoni stress) associated with gradients in σ, as may
result from gradients in temperature θ or chemical composition c at the interface since in general
σ = σ(θ, c)

• LHS contains only the non-diagonal terms of T - only the velocity gradients, not pressure; therefore
any non-zero ∇σ at a fluid interface must always drive motion.

5.2 Appendix A : Useful identity

Recall Stokes Theorem: ∫

F · dℓ =

∫

n · (∇ ∧ F ) dS (5.10)
C S

Along the contour C, dℓ = m dℓ, so that we have

∫

F · m dℓ =
C

∫

n · (∇ ∧ F ) dS (5.11)
S

Now let F = f ∧ b, where b is an arbitrary constant vector. We thus have

∫

(f ∧ b) ·m dℓ =

∫

n · (∇ ∧ (f ∧ b)) dS (5.12)
C S

Now use standard vector identities to see (f ∧ b) ·m = −b · (f ∧m) and

∇ ∧ (f ∧ b) = f (∇ · b)− b (∇ · f) + b · ∇f − f · ∇b = −b (∇ · f) + b · ∇f (5.13)

since b is a constant vector. We thus have

b ·

∫

(f ∧m) dℓ = b ·

∫

[n (∇ · f)− (∇f) · n] dS (5.14)
C S

Since b is arbitrary, we thus have

∫

(f ∧m) dℓ =

∫

[n (∇ · f)− (∇f) · n] dS (5.15)
C S

We now choose f = σn, and recall that n ∧m = −s. One thus obtains
−

∫
σsdℓ =

∫
[n∇ · (σn)−∇ (σn) · n] dS = [n∇σ · n+ σn (∇ · n)−∇σ − σ (∇n) · n] dS.

C S S

We note that ∇σ · n = 0 since ∇σ must b

∫

e tangent to the surface S and ( 1
∇n) · n = ∇

2
(n · n) =

1
∇

2
(1) = 0, and so obtain the desired result:

∫

σs dℓ =

∫

[∇σ − σn (∇ · n)] dS (5.16)
C S
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5.3. Fluid Statics Chapter 5. Stress Boundary Conditions 

5.3 Fluid Statics 

We begin by considering static fluid configurations, for which the stress tensor reduces to the form T = −pI, 
so that n · T · n = −p, and the normal stress balance equation (5.8) assumes the simple form: 

p̂− p = σ∇ · n (5.17) 

The pressure jump across a static interface is balanced by the curvature force at the interface. Now since 
n · T · d = 0 for a static system, the tangential stress balance indicates that ∇σ = 0. This leads to 
the following important conclusion: There cannot be a static system in the presence of surface tension 
gradients. While pressure jumps can sustain normal stress jumps across a fluid interface, they do not 
contribute to the tangential stress jump. Consequently, tangential surface (Marangoni) stresses can only 
be balanced by viscous stresses associated with fluid motion. We proceed by applying equation (5.17) to 
describe a number of static situations. 

1. Stationary Bubble : We consider a spherical air bubble of radius R submerged in a static fluid.
 
What is the pressure drop across the bubble surface?
 
The divergence in spherical coordinates of F = (Fr, Fθ, Fφ) is given by
 

1 ∂ 
( ) 

1 ∂ 1 ∂
∇ · F = r2Fr + (sin θFθ) + Fφ. r2 ∂r r sin θ ∂θ r sin φ ∂φ


1 ∂ 2
Hence ∇ · n|S = r2|r=R = so the normal stress jump (5.17) indicates that r2 ∂r R 

2σ 
ΔP = p̂− p = (5.18) 

R 

The pressure within the bubble is higher than that outside by an amount proportional to the surface 
tension, and inversely proportional to the bubble size. As noted in Lec. 2, it is thus that small bubbles 
are louder than large ones when they burst at a free surface: champagne is louder than beer. We note 
that soap bubbles in air have two surfaces that define the inner and outer surfaces of the soap film; 
consequently, the pressure differential is twice that across a single interface. 

2. The static meniscus (θe < π/2) 

Consider a situation where the pressure within a early with z. Such a situation arises in the static 
static fluid varies owing to the presence of a gravi- meniscus (below). 
tational field, p = p0 +ρgz, where p0 is the constant 
ambient pressure, and g = −gẑ is the grav. acceler
ation. The normal stress balance thus requires that 
the interface satisfy the Young-Laplace Equation: 

ρgz = σ∇ · n (5.19) 

The vertical gradient in fluid pressure must be bal
anced by the curvature pressure; as the gradient is 
constant, the curvature must likewise increase lin- Figure 5.3: Static meniscus near a wall. 

The shape of the meniscus is prescribed by two factors: the contact angle between the air-water 
interface and the wall, and the balance between hydrostatic pressure and curvature pressure. We treat 
the contact angle θe as given; noting that it depends in general on the surface energy. The normal 
force balance is expressed by the Young-Laplace equation, where now ρ = ρw − ρair ≈ ρw is the density 
difference between water and air. We define the free surface by z = η(x); equivalently, we define a 
functional f(x, z) = z − η(x) that vanishes on the surface. The normal to the surface z = η(x) is thus 

∇f ẑ − η′(x)x̂
n = = (5.20) 

|∇f | [1 + η′(x)2]
1/2 
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5.3. Fluid Statics Chapter 5. Stress Boundary Conditions

As deduced in Appendix B, the curvature of the free surface ∇ · n̂, may be expressed as

−ηxx
∇ · n̂ = ≈ −ηxx (5.21)

(1 + η2)3/2x

Assuming that the slope of the meniscus remains sufficiently small, η2x ≪ 1, allows one to linearize equation
(5.21), so that (5.19) assumes the form

ρgη = σηxx (5.22)

Applying the boundary condition η(∞) = 0 and the contact condition ηx(0) = − cot θ, and solving (5.22)
thus yields

η(x) = ℓc cot θee
−x/ℓc (5.23)

where ℓc =
√

σ/ρg is the capillary length. The meniscus formed by an object floating in water is exponen-
tial, decaying over a length scale ℓc. Note that this behaviour may be rationalized as follows: the system
arranges itself so that its total energy (grav. potential + surface) is minimized.

3. Floating Bodies

Floating bodies must be supported by some combination of buoyancy and curvature forces. Specifically,
since the fluid pressure beneath the interface is related to the atmospheric pressure p0 above the interface
by

p = p0 + ρgz + σ∇ · n , (5.24)

one may express the vertical force balance as

Mg = z ·

∫

−pndℓ = Fb + F .

c

︸︷︷︸
c (5.25)

C
buo

︸︷︷︸

yancy urvature

The buoyancy force

Fb = z ·

∫

ρgzn dℓ = ρgVb (5.26)
C

is thus simply the weight of the fluid displaced above the object and inside the line of tangency (see figure
below). We note that it may be deduced by integrating the curvature pressure over the contact area C
using the first of the Frenet-Serret equations (see Appendix C).

F ∇ ·c = z ·

∫

σ ( n)n dℓ = σz ·
C

∫
dt

dℓ = σz · (t1 − t2) = 2σ sin θ (5.27)
C dℓ

At the interface, the buoyancy and curvature forces must balance precisely, so the Young-Laplace relation
is satisfied:

0 = ρgz + σ∇ · n (5.28)

Integrating this equation over the meniscus and taking the vertical component yields the vertical force
balance:

Fm
b + Fm

c = 0 (5.29)

where

Fm
b = z ·

∫

ρgzn dℓ = ρgVm (5.30)
Cm

dt
Fm
c = z ·

∫

σ (∇ · n)n dℓ = σz ·

∫

dℓ = σz · (t1 − t
Cm Cm

dℓ
2) = −2σ sin θ (5.31)

where we have again used the Frenet-Serret equations to evaluate the curvature force.
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5.3. Fluid Statics Chapter 5. Stress Boundary Conditions 

Figure 5.4: A floating non-wetting body is supported by a combination of buoyancy and curvature forces, 
whose relative magnitude is prescribed by the ratio of displaced fluid volumes Vb and Vm. 

Equations (5.27-5.31) thus indicate that the curvature force acting on the floating body is expressible in 
terms of the fluid volume displaced outside the line of tangency: 

Fc = ρgVm (5.32) 

The relative magnitude of the buoyancy and curvature forces supporting a floating, non-wetting body is 
thus prescribed by the relative magnitudes of the volumes of the fluid displaced inside and outside the 
line of tangency: 

Fb Vb 
= (5.33) 

Fc Vm 

For 2D bodies, we note that since the meniscus will have a length comparable to the capillary length, 
1/2

ℓc = (σ/(ρg)) , the relative magnitudes of the buoyancy and curvature forces, 

Fb r 
≈ , (5.34) 

Fc ℓc 

is prescribed by the relative magnitudes of the body size and capillary length. Very small floating objects 
(r ≪ ℓc) are supported principally by curvature rather than buoyancy forces. This result has been 
extended to three-dimensional floating objects by Keller 1998, Phys. Fluids, 10, 3009-3010. 
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5.3. Fluid Statics Chapter 5. Stress Boundary Conditions 

Figure 5.5: a) Water strider legs are covered with hair, rendering them effectively non-wetting. The 
tarsal segment of its legs rest on the free surface. The free surface makes an angle θ with the horizontal, 
resulting in an upward curvature force per unit length 2σ sin θ that bears the insect’s weight. b) The 
relation between the maximum curvature force Fs = 2σP and body weight Fg = Mg for 342 species of 
water striders. P = 2(L1 + L2 + L3) is the combined length of the tarsal segments. From Hu, Chan & 
Bush; Nature 424, 2003. 

4. Water-walking Insects 

Small objects such as paper clips, pins or insects may reside at rest on a free surface provided the curvature 
force induced by their deflection of the free surface is sufficient to bear their weight (Fig. 5.5a). For example, 
for a body of contact length L and total mass M , static equilibrium on the free surface requires that: 

Mg 
< 1 , (5.35) 

2σL sin θ 

where θ is the angle of tangency of the floating body.
 
This simple criterion is an important geometric constraint on water-walking insects. Fig. 5.5b indicates
 
the dependence of contact length on body weight for over 300 species of water-striders, the most common
 
water walking insect. Note that the solid line corresponds to the requirement (5.35) for static equilibrium.
 
Smaller insects maintain a considerable margin of safety, while the larger striders live close to the edge.
 
The maximum size of water-walking insects is limited by the constraint (5.35).
 

If body proportions were independent of size L, one would expect the body weight to scale as L3 and 

the curvature force as L. Isometry would thus suggest a dependence of the form Fc ∼ Fg 
1/3

, represented 
as the dashed line. The fact that the best fit line has a slope considerably larger than 1/3 indicates a 
variance from isometry: the legs of large water striders are proportionally longer. 
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5.4. Appendix B : Computing curvatures Chapter 5. Stress Boundary Conditions 

5.4 Appendix B : Computing curvatures 

We see the appearance of the divergence of the surface normal, ∇ · n, in the normal stress balance. We 
proceed by briefly reviewing how to formulate this curvature term in two common geometries. 

In cartesian coordinates (x, y, z), we consider a surface defined by z = h(x, y). We define a functional 
f(x, y, z) = z − h(x, y) that necessarily vanishes on the surface. The normal to the surface is defined by 

∇f ẑ − hxx̂− hyŷ
n = = (5.36) 

|∇f | ( )1/2 
1 + h2 + h2 

x y

and the local curvature may thus be computed: 

( )
− (hxx + hyy)− hxxhy 

2 + hyyhx
2 + 2hxhyhxy 

∇ · n = (5.37) ( )3/2 
1 + h2 + h2 

x y

In the simple case of a two-dimensional interface, z = h(x), these results assume the simple forms: 

ẑ − hxx̂ −hxx 
n = , ∇ · n = (5.38) 

1/2 3/2
(1 + h2 ) (1 + h2 )x x

Note that n is dimensionless, while ∇ · n has the units of 1/L. 
In 3D polar coordinates (r, θ, z), we consider a surface defined by z = h(r, θ). We define a functional 

g(r, θ, z) = z − h(r, θ) that vanishes on the surface, and compute the normal: 

r − 1 ˆhθθ∇g ẑ − hr ˆ r n = = , (5.39) )1/2|∇g| (
1 h21 + h2 +r r2 θ

from which the local curvature is computed: 

− 2 hrh
2 
− r2hrr − hrrh

2 
θ + hrhθhrθ 

∇ · n = r r θ (5.40) 
−hθθ − h2hθθ + hrhtheta − rhr 

r2 
(

1 
)1/2 

h21 + h2 +r r2 θ

In the case of an axisymmetric interface, z = h(r), these reduce to: 

ẑ − hrr̂ −rhr − r2hrr 
n = , ∇ · n = (5.41) 

1/2 3/2
(1 + h2) r2 (1 + h2)r r

5.5 Appendix C : Frenet-Serret Equations 

Differential geometry yields relations that are of- Note that the LHS of (5.42) is proportional to the 
ten useful in computing curvature forces on 2D in- curvature pressure acting on an interface. Therefore 
terfaces. the net force acting on surface S as a result of cur

vature / Laplace pressures: 
I I 

dtdt F = σ (∇ · n)n dℓ = σ dℓ = σ (t2 − t1)(∇ · n)n = (5.42) C C dℓ 
dℓ and so the net force on an interface resulting from 
dn curvature pressure can be deduced in terms of the 

− (∇ · n) t = (5.43) 
dℓ geometry of the end points. 
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6. More on Fluid statics

Last time, we saw that the balance of curvature and hydrostatic pressures requires
−ρgη = σ∇ · n = σ −ηxx

(1+η2)
3/2

.
x

We linearized, assuming ηx ≪ 1, to find η(x). Note: we can integrate directly

ηxηxx d η2 d 1
ρgηηx = σ ρg = σ

3/2
(1 + η2

⇒
dx

x)

(

2

)

dx 1/2
(1 + η2

∫
x)

⇒

1 ∞

ρgη2
d 1 1

= dx = 1 = 1 sin θ
2σ dx 1/2 1/2

x (1 + η2x)
−

(1 + η2x)
−

1
σ sin θ + ρgη2 = σ

2
(6.1)

Figure 6.1: Calculating the shape and maximal rise height of a static meniscus.

Maximal rise height: At z = h we have θ = θe, so from (6.1) 1ρgh2 = σ(1
2

− sin θe), from which

h =
√

2ℓc(1− sin θe)
1/2

where ℓc =
√

σ/ρg (6.2)

Alternative perspective: Consider force balance on the meniscus.
Horizontal force balance:

1
σ sin θ + ρgz2 = σ (6.3)

2
horiz. pr

︸

oj

︷︷

ecti

︸

on of T1
︸ ︷︷ ︸ T2

hydrostatic suction

︸︷︷︸

Vertical force balance:

σ cos θ =

vert. proj. of T

∫
∞

ρgzdx (6.4)
︸ ︷︷ ︸

1

wei

At x = 0, where θ = θe, gives σ cos θe = weight of fluid d

︸
x

ght

︷︷

of flu

︸

id

isplaced above z = 0.

Note: σ cos θe = weight of displaced fluid is +/− according to whether θe is smaller or larger than π .
2

Floating Bodies Without considering interfacial effects, one anticipates that heavy things sink and light
things float. This doesn’t hold for objects small relative to the capillary length.
Recall: Archimedean force on a submerged body FA =

∫
pndS = ρgVB .S

In general, the hydrodynamic force acting on a body in a fluid
Fh =

∫
T · ndS, where T = pI+ 2µE = pI for static fluid.

S ∫
− −

Here Fh = − pndS =
S

−

∫
ρgzndS =

∫ S
−ρg ∇z dV by divergence theorem. This is equal to

V
−ρg dV ẑ = −ρgV ẑ = weight of displaced flu

∫

id. The archimedean force can thus support weight
V

of a body Mg = ρBgV if ρF > ρB (fluid density larger than body density); otherwise, it sinks.

22



6.1. Capillary forces on floating bodies Chapter 6. More on Fluid statics 

Figure 6.2: A heavy body may be supported on a fluid surface by a combination of buoyancy and surface 
tension. 

6.1 Capillary forces on floating bodies 

• arise owing to interaction of the menisci of floating bodies 

• attractive or repulsive depending on whether the menisci are of the same or opposite sense 

• explains the formation of bubble rafts on champagne 

• explains the mutual attraction of Cheerios and their attraction to the walls 

• utilized in technology for self-assembly on the microscale 

Capillary attraction Want to calculate the attractive force between two floating bodies separated by 
a distance R. Total energy of the system is given by 

f 1 
∞ 1 h(x) 

Etot = σ dA(R) + dx ρgzdz (6.5) 
−∞ 0 

where the first term in (6.5) corresponds to the total surface energy when the two bodies are a distance 
R apart, and the second term is the total gravitational potential energy of the fluid. Differentiating (6.5) 
yields the force acting on each of the bodies: 

dEtot(R)
F (R) = − (6.6) 

dR 

Such capillary forces are exploited by certain water walking insects to climb menisci. By deforming the 
free surface, they generate a lateral force that drives them up menisci (Hu & Bush 2005). 
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7. Spinning, tumbling and rolling 
drops 

7.1 Rotating Drops 

We want to find z = h(r) (see right). Normal stress 
balance on S: 

1 
2ΔP + ΔρΩ2 r = σ∇ · n 

2 
"    

centrifugal 

Nondimensionalize: 
′ 

( 
r 
) 2 

Δp + 4B0 = ∇ · n,a
′ aΔp ΔρΩ2 

= 

"	    

curvature 

3 a centrifugal where Δp , Σ = = = = σ 8σ curvature 
Rotational Bond number = const. Define surface 
functional: f(r, θ) = z − h(r) ⇒ vanishes on the 
surface. Thus 

2
∇f ẑ−hr (r)r̂ −rhr −r hrr n = 
|∇|	 )3/2 = and ∇ · n = 

(1+h2 (r))1/2 r2(1+h2 
r	 r 

Figure 7.1: The radial profile of a rotating drop. 

Brown + Scriven (1980) computed drop shapes and stability for B0 > 0: 

1. for	 Σ < 0.09, only axisymmetric solutions, 
oblate ellipsoids 

2. for 0.09 < Σ < 0.31, both axisymmetric and 
lobed solutions possible, stable 

3. for	 Σ > 0.31 no stable solution, only lobed 
forms 

Tektites: centimetric metallic ejecta formed from 
spinning cooling silica droplets generated by mete
orite impact. 

Q1: Why are they so much bigger than raindrops? 
V 

σFrom raindrop scaling, we expect ℓc ∼ but 
Δρg 

both σ, Δρ higher by a factor of 10 ⇒ large tektite 
size suggests they are not equilibrium forms, but 
froze into shape during flight. 

Q2: Why are their shapes so different from those of 
raindrops? Owing to high ρ of tektites, the internal 
dynamics (esp. rotation) dominates the aerodynam
ics ⇒ drop shape set by its rotation. 

Figure 7.2: The ratio of the maximum radius to 
the unperturbed radius is indicated as a function of 
Σ. Stable shapes are denoted by the solid line, their 
metastable counterparts by dashed lines. Predicted 
3-dimensional forms are compared to photographs 
of natural tektites. From Elkins-Tanton, Ausillous, 
Bico, Quéré and Bush (2003). 
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7.2. Rolling drops Chapter 7. Spinning, tumbling and rolling drops

Light drops: For the case of Σ < 0, ∆ρ < 0, a spinning drop is stabilized on axis by centrifugal pressures.
For high |Σ|, it is well described by a cylinder with spherical caps. Drop energy:

1
E = IΩ2 + 2πrLγ

2
S f

R

︷︷
a

at

︸
y

ot ional

︸
ur ce energ

K.E.

︸ ︷︷ ︸

2

Neglecting the end caps, we write volume V = πr2L and moment of inertia I = ∆mr = ∆ρπLr4.
2 2

Figure 7.3: A bubble or a drop suspended in a denser fluid, spinning with angular speed Ω.

The energy per unit drop volume is thus E = 1∆ρΩ2r2 + 2γ .V 4 r
Minimizing with respect to r:

3
1d

( /
E
) 1 1/3/2
= 1∆ρΩ2r − 2γ = 0, which occurs when r =

(
4γ . Now r = V = 4γ

2 ⇒dr V 2 r ∆ρΩ2

)

πL

(

∆ρΩ2

)

( 3/2

( )

Vonnegut’s Formula: γ = 1 ∆ρΩ2 V
3/2

)
allows inference of γ from L, useful technique for small γ

4π L
as it avoids difficulties associated with fluid-solid contact.
Note: r grows with σ and decreases with Ω.

7.2 Rolling drops

Figure 7.4: A liquid drop rolling down an inclined plane.

(Aussillous and Quere 2003 ) Energetics: for steady descent at speed V, MgV sin θ =Rate of viscous
dissipation= 2µ

∫
(∇u)2dV , where Vd is the dissipation zone, so this sets V ⇒ Ω = V/R is the angular

Vd

speed. Stability characteristics different: bioconcave oblate ellipsoids now stable.
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8. Capillary Rise
 
Capillary rise is one of the most well-known and vivid illustrations of capillarity. It is exploited in a number 
of biological processes, including drinking strategies of insects, birds and bats and plays an important role 
in a number of geophysical settings, including flow in porous media such as soil or sand. 

Historical Notes: 

•	 Leonardo da Vinci (1452 - 1519) recorded the effect in his notes and proposed that mountain streams 
may result from capillary rise through a fine network of cracks 

•	 Jacques Rohault (1620-1675): erroneously suggested that capillary rise is due to suppresion of air 
circulation in narrow tube and creation of a vacuum 

•	 Geovanni Borelli (1608-1675): demonstrated experimentally that h ∼ 1/r 

•	 Geminiano Montanari (1633-87): attributed circulation in plants to capillary rise 

•	 Francis Hauksbee (1700s): conducted an extensive series of capillary rise experiments reported by 
Newton in his Opticks but was left unattributed 

•	 James Jurin (1684-1750): an English physiologist who independently confirmed h ∼ 1/r; hence 
“Jurin’s Law”. 

Consider capillary rise in a cylindrical tube of inner radius a (Fig. 8.2) 

Recall:
 
Spreading parameter: S = γSV − (γSL + γLV ).
 

We now define Imbibition / Impregnation parame
ter:
 
I = γSV − γSL = γLV cos θ
 
via force balance at contact line.
 
Note: in capillary rise, I is the relevant parameter,
 
since motion of the contact line doesn’t change the
 
energy of the liquid-vapour interface.
 

Imbibition Condition: I > 0. 

Note: since I = S + γLV , the imbibition condition 
I > 0 is always more easily met than the spreading 
condition, S > 0 Figure 8.1: Capillary rise and fall in a tube for two 
⇒ most liquids soak sponges and other porous me- values of the imbibition parameter I: 
dia, while complete spreading is far less common. I > 0 (left) and I < 0 (right). 
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Chapter 8. Capillary Rise 

We want to predict the dependence of rise height H on both tube radius a and wetting properties. We 
do so by minimizing the total system energy, specifically the surface and gravitational potential energies. 
The energy of the water column: 

E = (γSL − γSV ) 2πaH + 
1 
ρga2πH2 = −2πaHI +

1 
ρga2πH2 

 ;  2 2
surface energy 

 ;  

grav.P.E. 

will be a minimum with respect to H when dE = 0
dH 

2γSV −γSL 2 I⇒ H = = , from which we deduce ρga ρga

γLV cos θ 
Jurin’s Law H = 2 (8.1) 

ρgr 

Note: 

1. describes both capillary rise and descent: sign 
of H depends on whether θ > π/2 or θ < π/2 

2. H increases as θ decreases. Hmax for θ = 0 

3. we’ve implicitly assumed R ≪ H & R ≪ lC . 

The same result may be deduced via pressure or 
force arguments. 
By Pressure Argument 
Provided a ≪ ℓc, the meniscus will take the form 

aof a spherical cap with radius R = . Therefore 
cos θ

cos θ cos θpA = pB − 2σ = p0 − 2σ = p0 − ρgH a a
 
2σ cos θ


⇒ H = as previously. ρga 
By Force Argument 
The weight of the column supported by the tensile 
force acting along the contact line: 
ρπa2Hg = 2πa (γSV − γSL) = 2πaσ cos θ, from 
which Jurin’s Law again follows. 

Figure 8.2: Deriving the height of capillary rise in 
a tube via pressure arguments. 
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8.1. Dynamics Chapter 8. Capillary Rise 

8.1 Dynamics 

The column rises due to capillary forces, its rise being resisted by a combination of gravity, viscosity, fluid 
I

inertia and dynamic pressure. Conservation of momentum dictates d (m(t)ż(t)) = FTOT + ρvv · ndA,
dt S 

2where the second term on the right-hand side is the total momentum flux, which evaluates to πa2ρż = ṁż, 
so the force balance on the column may be expressed as 

  
1 

2  m + ma
 z̈ = 2πaσ cos θ − mg − πa2 ρż − 2πaz · τv (8.2) 

2; ; ; ; ;
Inertia capillary force Added mass weight 

; 
viscous force 

dynamic pressure 

where m = πa2zρ. Now assume the flow in the tube is fully developed Poiseuille flow, which will be 
2 

( )
aestablished after a diffusion time τ = ν . Thus, u(r) = 2ż 1− a

r 2
2 , and F = πa2ż is the flux along the 

tube. 
du 

− 4µThe stress along the outer wall: τν = µ ż.|r=a = dr a 
Finally, we need to estimate ma, which will dominate the dynamics at short time. We thus estimate the 

( 
1change in kinetic energy as the column rises from z to z+Δz. ΔEk = Δ mU2

)
, where m = mc+m0+m

∞2 
(mass in the column, in the spherical cap, and all the other mass, respectively). In the column,mc = πa2zρ, 

2π u = U . In the spherical cap, m0 = a3ρ, u = U . In the outer region, radial inflow extends to ∞, but 
3 

u(r) decays. 
Volume conservation requires: πa2U = 2πa2ur(a) ⇒ ur(a) = U/2. 

a aContinuity thus gives: 2πa2ur(a) = 2πr2ur(r) ⇒ ur(r) = r2
2 
ur(a) = 

2r

2

2 U . 
eff U2 1 

I
∞ 

(r)2Thus, the K.E. in the far field: 1 m = ur dm, where dm = ρ2πr2dr. 
∞2 2 a 

Hence 
1
∞ ( )2

1 a2 

m = eff ρ U 2πr2dr = 
∞ U2 2r2 

a 
1
∞ 1 1 

= πρa4 dr = ρπa3 

2r2 2a 

Now 

1
)U2 1 

Δ (mc + m0 + m
∞

+ m2UΔU =ΔEk = 
2 2
 
1 1
 ( eff 

)
U2 = Δmc + mc + m0 + m 2UΔU = 

∞2 2 
1 
( ) 

U2 
(

2 1 
)

= πa2ρΔz + πa2ρz+ πa3ρ+ πa3ρ UΔU
2 3 2 Figure 8.3: The dynamics of capillary rise. 

7 
− 4µSubstituting for m = πa2zρ, ma = πa3ρ (added mass) and τv = ż into (8.2) we arrive at 

6 a 

( )
7 2σ cos θ 1 8µzż

z + a z̈ = − ż2 
− − gz (8.3) 

6 ρa 2 ρa2 

The static balance clearly yields the rise height, i.e. Jurin’s Law. But how do we get there? 

MIT OCW: 18.357 Interfacial Phenomena 28 Prof. John W. M. Bush 



8.1. Dynamics	 Chapter 8. Capillary Rise 

Inertial Regime 

1. the timescale of	 establishment of Poiseuille
 
flow is τ∗ = 4a 

2
 
, the time required for boundν 

ary effects to diffuse across the tube 

2.	 until this time, viscous effects are negligible 
and the capillary rise is resisted primarily by Figure 8.4: The various scaling regimes of capillary 
fluid inertia rise. 

7 2σ cos θInitial Regime: z ∼ 0, ż ∼ 0, so the force balance assumes the form 
6 ρa az̈ = We thus infer 

6 σ cos θz(t) = t2 .
7 ρa2 

7 
(

7 
) 

2σ cos θOnce z ≥ a, one must also consider the column mass, and so solve z + a	 z̈ = . As the col
6 6 ρa 

2 2 2σ cos θumn accelerates from ż = 0, ż becomes important, and the force balance becomes: 1 ż = ⇒
2 ρa 

( )1/2 
4σ cos θ ż = U = is independent of g, µ.ρa
 

( )1/2
 
4σ cos θz = t.ρa 

Viscous Regime (t ≫ τ∗) Here, inertial effects become negligible, so the force balance assumes the form: 
2σ cos θ 

− 8µzż	 8µzż 2σ cos θ ρga2 ( 
H 

)
− gz = 0. We thus infer H − z = , where H = , ż = − 1ρa ρa2	 ρga2 ρga 8µ z 

∗	 8µH Nondimensionalizing: z = z/H, t∗ = t/τ , τ = ;ρga2 

∗ 1 z	 1 
⇒ t∗ ∗We thus have ż = z ∗ ⇒ dt∗ = 

∗ 
dz∗ = (−1− 

1−z ∗ )dz
∗ = −z − ln(1− z ∗). 

−1 1−z ∗ 
∗ 

Note: at t ∗ 
→∞, z → 1. 

√ 
∗ ∗	 ∗Early Viscous Regime: When z ≪ 1, we consider ln(z − 1) = −z ∗ 

− 1 z ∗2and so infer z = 2t∗ .
2 

[ ]1/2 
σa cos θRedimensionalizing thus yields Washburn’s Law : z = 

2µ t

Note that ż is independent of g. 

∗Late Viscous Regime: As z approaches H, z ≈ 1. Thus, we consider t∗ = [−z ∗ 
−ln(1−z ∗)] = ln(1−z ∗) 

∗and so infer z = 1− exp(−t ∗). 
2σ cos θ 8µH Redimensionalizing yields z = H [1− exp(−t/τ)], where H = and τ = ρga ρga2 . 

2 
( )1/2 

∗ 4a	 ∗ 4σ cos θ 4a 2 
Note: if rise timescale ≪ τ = , inertia dominates, i.e. H ≪ Uintertialτ = ⇒ inertial ν	 ρa ν 

overshoot arises, giving rise to oscillations of the water column about its equilibrium height H. 

cos θWicking In the viscous regime, we have 2σ = ρa 
8µzż
ρa2 + ρg. What if the viscous stresses dominate 
gravity? This may arise, for example, for predomi
nantly horizontal flow (Fig. 8.5). 

2σa cos θ 1 d 2Force balance: = zż = z	 ⇒ z = 
8µ 2 dt

( )1/2 √ 
σa cos θ 

2µ t ∼ t (Washburn’s Law). 

Note: Front slows down, not due to g, but owing to 
increasing viscous dissipation with increasing col- Figure 8.5: Horizontal flow in a small tube. 
umn length. 
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9. Marangoni Flows
 
Marangoni flows are those driven by surface gradients. In general, surface tension σ depends on both the 
temperature and chemical composition at the interface; consequently, Marangoni flows may be generated 
by gradients in either temperature or chemical composition at an interface. We previously derived the 
tangential stress balance at a free surface: 

n · T · t = −t · ∇σ , (9.1) 

where n is the unit outward normal to the surface, and t is any unit tangent vector. The tangential 
component of the hydrodynamic stress at the surface must balance the tangential stress associated with 
gradients in σ. Such Marangoni stresses may result from gradients in temperature or chemical composition 
at the interface. For a static system, since n · T · t = 0, the tangential stress balance equation indicates 
that: 0 = ∇σ. This leads us to the following important conclusion: 

There cannot be a static system in the presence of surface tension gradients. 
While pressure jumps can arise in static systems characterized by a normal stress jump across a fluid 
interface, they do not contribute to the tangential stress jump. Consequently, tangential surface stresses 
can only be balanced by viscous stresses associated with fluid motion. 
Thermocapillary flows: Marangoni flows induced by temperature gradients σ(T ). 

dσ Note that in general < 0 Why? A warmer gas phase has more liquid molecules, so the creation of dT 
surface is less energetically unfavourable; therefore, σ is lower. 
Approach Through the interfacial BCs (and σ(T )’s appearance therein), N-S equations must be coupled 

Figure 9.1: Surface tension of a gas-liquid interface decreases with temperature since a warmer gas phase 
contains more suspended liquid molecules. The energetic penalty of a liquid molecule moving to the 
interface is thus decreased. 

to the heat equation 
∂T 

+ u · ∇T = κ∇2T (9.2) 
∂t 
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Chapter 9. Marangoni Flows 

Note: 

1.	 the heat equation must be solved subject to appropriate BCs at the free surface. Doing so can be 
complicated, especially if the fluid is evaporating. 

Ua 2. Analysis may be simplified when the Peclet number Pe = ≪ 1. Nondimensionalize (9.2): κ 
′ a ′ 

x = ax , t = t ′ , u = Uu to get U 

( )
′ 

′ ′ ′ 
Pe

∂T
+ u · ∇ 

′ T = ∇2T	 (9.3) 
∂t′ 

Note: 
Ua ν

Pe = Re · Pr = · ≪ 1 if Re ≪ 1, so one has ∇2T = 0. ν κ 
The Prandtl number Pr = O(1) for many common (e.g. aqeous) fluids. 
E.g.1 Thermocapillary flow in a slot (Fig.9.2a) 

Δσ dσ ΔT USurface Tangential BCs τ = = ≈ µ viscous stress U ∼ 1 HΔσ.L dT L H	 µ L 

Figure 9.2: a) Thermocapillary flow in a slot b) Thermal convection in a plane layer c) Thermocapillary 
drop motion. 

E.g.2 Thermocapillary Drop Motion (Young, Goldstein & Block 1962)
 
can trap bubbles in gravitational field via thermocapillary forces. (Fig.9.2c).
 
E.g.3 Thermal Marangoni Convection in a Plane Layer (Fig.9.2b).
 
Consider a horizontal fluid layer heated from below. Such a layer may be subject to either buoyancy- or
 
Marangoni-induced convection.
 
Recall: Thermal buoyancy-driven convection (Rayleigh-Bernard) ρ(T ) = ρ0 (1 + α(T − T0)), where α is
 
the thermal expansivity. Consider a buoyant blob of characteristic scale d. Near the onset of convection,
 

gαΔTd2 

one expects it to rise with a Stokes velocity U ∼ gΔρ d2 
= . The blob will rise, and so convection ρ ν ν 

d dν will occur, provided its rise time τrise = = is less than the time required for it to lose its heat U gαΔTd2 

d2 
and buoyancy by diffusion, τdiff = .κ 

τdif f gαΔTd3 

Criterion for Instability: ∼ ≡ Ra > Rac ∼ 103, where Ra is the Rayleigh number. τrise κν 

Note: for Ra < Rac, heat is transported solely through diffusion, so the layer remains static. For
 
Ra > Rac, convection arises.
 
The subsequent behaviour depends on Ra and Pr. Generally, as Ra increases, steady convection rolls ⇒
 
time-dependency ⇒ chaos ⇒ turbulence.
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Chapter 9. Marangoni Flows 

Thermal Marangoni Convection 

Arises because of the dependence of σ on temperature: σ(T ) = σ0 − Γ(T − T0) 
Mechanism: 

•	 Imagine a warm spot on surface ⇒ prompts surface divergence ⇒ upwelling. 

•	 Upwelling blob is warm, which reinforces the perturbation provided it rises before losing its heat via 
diffusion. 

Δσ µU 
•	 Balance Marangoni and viscous stress: ∼d d
 

d µd
 
•	 Rise time: ∼U Δσ 

•	 Diffusion time τdiff = dκ 
2 

τdif f 
∼ ΓΔTd Criterion for instability: µκ ≡Ma > Mac, where Ma is the Marangoni number. τrise 

Note: 

1. Since Ma ∼ d and Ra ∼ d3, thin layers are most unstable to Marangoni convection. 

2. Bénard’s original experiments performed in millimetric layers of spermaceti were visualizing Marangoni 
convection, but were misinterpreted by Rayleigh as being due to buoyancy ⇒ not recognized until 
Block (Nature 1956). 

3.	 Pearson (1958) performed stability analysis with flat surface ⇒ deduced Mac = 80 . 

4.	 Scriven & Sternling (1964) considered a deformable interface, which renders the system unstable at 
all Ma. Downwelling beneath peaks in Marangoni convection, upwelling between peaks in Rayleigh
Bénard convection (Fig. 9.3a). 

5.	 Smith (1966) showed that the destabilizing influence of the surface may be mitigated by gravity. 
dσ dT 2Stability Criterion: < ρgd ⇒ thin layers prone to instability. dT dz 3 
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Chapter 9. Marangoni Flows 

E.g.4 Marangoni Shear Layer (Fig. 9.3) 
Lateral ∇θ leads to Marangoni stress ⇒ shear flow. The resulting T (x, y) may destabilize the layer to 

Figure 9.3: a) Marangoni convection in a shear layer may lead to transverse surface waves or streamwise
 
rolls (c). Surface deflection may accompany both instabilities (b,d).
 

Marangoni convection.
 
Smith & Davis (1983ab) considered the case of flat free surface. System behaviour depends on Pr = ν/κ.
 
Low Pr: Hydrothermal waves propagate in direction of τ .
 
High Pr: Streamwise vortices (Fig. 9.3c).
 
Hosoi & Bush (2001) considered a deformable free surface (Fig. 9.3d)
 

E.g.5 Evaporatively-driven convection 

e.g. for an alcohol-H2O solution, evaporation affects both the alcohol concentration c and temperature θ. 
The density ρ(c, θ) and surface tension σ(c, θ) are such that ∂ρ < 0, ∂ρ < 0, dσ < 0, dσ < 0. Evaporation ∂θ ∂c dθ dc 
results in surface cooling and so may generate either Rayleigh-Bénard or Marangoni thermal convection. 
Since it also induces a change in surface chemistry, it may likewise generate either Ra− B or Marangoni 
chemical convection. 

E.g.6 Coffee Drop 

Marangoni flows are responsible for the ring-like stain left by a 
coffee drop. 

•	 coffee grounds stick to the surface 

•	 evaporation leads to surface cooling, which is most pro
nounced near the edge, where surface area per volume ratio
 
is highest
 

•	 resulting thermal Marangoni stresses drive radial outflow
 
on surface ⇒ radial ring
 

Figure 9.4: Evaporation of water from 
a coffee drop drives a Marangoni flow. 
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10. Marangoni Flows II 

10.1 Tears of Wine 

The first Marangoni flow considered was the tears of wine phenomenon (Thomson 1885 ), which actually 
predates Marangoni’s first published work on the subject by a decade. The tears of wine phenomenon 
is readily observed in a wine glass following the establishment of a thin layer of wine on the walls of the 
glass. 

An illustration of the tears of wine phenomenon is shown in Fig. 10.1. Evaporation of alcohol occurs 
everywhere along the free surface. The alcohol concentration in the thin layer is thus reduced relative to 
that in the bulk owing to the enhanced surface area to volume ratio. As surface tension decreases with 
alcohol concentration, the surface tension is higher in the thin film than the bulk; the associated Marangoni 
stress drives upflow throughout the thin film. The wine climbs until reaching the top of the film, where 
it accumulates in a band of fluid that thickens until eventually becoming gravitationally unstable and 
releasing the tears of wine. The tears or “legs” roll back to replenish the bulk reservoir, but with fluid 
that is depleted in alcohol. 

The flow relies on the transfer of chemical potential energy to kinetic and ultimately gravitational 
potential energy. The process continues until the fuel for the process, the alcohol is completely depleted. 
For certain liquors (e.g. port), the climbing film, a Marangoni shear layer, goes unstable to streamwise 
vortices and an associated radial corrugation - the “tear ducts of wine” (Hosoi & Bush, JFM 2001). When 
the descending tears reach the bath, they appear to recoil in response to the abrupt change in σ. The 
tears or legs of wine are taken by sommeliers to be an indicator of the quality of wine. 

Figure 10.1: The tears of wine. Fluid is drawn from the bulk up the thin film adjoining the walls of the 
glass by Marangoni stresses induced by evaporation of alcohol from the free surface. 
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10.2. Surfactants	 Chapter 10. Marangoni Flows II 

Figure 10.2: a) A typical molecular structure of surfactants. b) The typical dependence of σ on surfactant 
concentration c. 

10.2 Surfactants 

Surfactants are molecules that have an affinity for interfaces; common examples include soap and oil. 
Owing to their molecular structure (e.g. a hydrophilic head and hydrophobic tail, Fig. 10.2a), they 
find it energetically favourable to reside at the free surface. Their presence reduces the surface tension; 
consequently, gradients in surfactant concentration Γ result in surface tension gradients. Surfactants thus 
generate a special class of Marangoni flows. There are many different types of surfactants, some of which 
are insoluble (and so remain on the surface), others of which are soluble in the suspending fluid and 
so diffuse into the bulk. For a wide range of common surfactants, surface tension is a monotonically 
decreasing function of Γ until a critical micell concentration (CMC) is achieved, beyond CMC there is no 
further dependence of σ on Γ (Fig. 10.2b). 
Surfactant properties: 

•	 Diffusivity prescribes the rate of diffusion, Ds (bulk diffusivity Db), of a surfactant along an 
interface 

•	 Solubility prescribes the ease with which surfactant passes from the surface to the bulk. An 
insoluble surfactant cannot dissolve into the bulk, must remain on the surface. 

•	 Volatility prescribes the ease with which surfactant sublimates. 

Theoretical Approach: because of the dependence of σ on the surfactant concentration, and the ap
pearance of σ in the boundary conditions, N-S equations must be augmented by an equation governing 
the evolution of Γ. In the bulk, 

∂c 
= Db∇

2+ u · ∇c c	 (10.1) 
∂t 

The concentration of surfactant Γ on a free surface evolves according to 

∂Γ 
∇
2+ ∇s · (Γus) + Γ (∇s · n) (u · n) = J (Γ, Cs) + Ds Γ	 (10.2) s∂t 

where us is the surface velocity, ∇s is the surface gradient operator and Ds is the surface diffusivity of 
the surfactant (Stone 1999). J is a surfactant source term associated with adsorption onto or desorption 
from the surface, and depends on both the surface surfactant concentration Γ and the concentration in the 
bulk Cs. Tracing the evolution of a contaminated free surface requires the use of Navier-Stokes equations, 
relevant boundary conditions and the surfactant evolution equation (10.2). The dependence of surface 
tension on surfactant concentration, σ(Γ), requires the coupling of the flow field and surfactant field. In 
certain special cases, the system may be made more tractable. For example, for insoluble surfactants, 
J = 0. Many surfactants have sufficiently small Ds that surface diffusivity may be safely neglected. 
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Figure 10.3: The footprint of a whale, caused by the whales sweeping biomaterial to the sea surface. The 
biomaterial acts as a surfactant in locally suppressing the capillary waves evident elsewhere on the sea 
surface. Observed in the wake of a whale on a Whale Watch from Boston Harbour. 

Special case: expansion of a spherical surfactant-laden bubble. 
∂Γ dR dΓ dR = −2 dR +Γ (∇ · n) ur = 0. Here ∇ · n = 2/R, ur = so +Γ 2 = 0 ⇒ dΓ 4πR2Γ =const., so ∂t dt dt R dt Γ R 
the surfactant is conserved. 

Marangoni Elasticity The principal dynamical influence of surfactants is to impart an effective 
elasticity to the interface. One can think of a clean interface as a “slippery trampoline” that resists 
deformation through generation of normal curvature pressures. However, such a surface cannot generate 
traction on the interface. However, a surface-laden interface, like a trampoline, resists surface deformation 
as does a clean interface, but can also support tangential stresses via Marangoni elasticity. Specifically, 
the presence of surfactants will serve not only to alter the normal stress balance (through the reduction 
of σ), but also the tangential stress balance through the generation of Marangoni stresses. 

The presence of surfactants will act to suppress any fluid motion characterized by non-zero surface 
divergence. For example, consider a fluid motion characterized by a radially divergent surface motion. 
The presence of surfactants results in the redistribution of surfactants: Γ is reduced near the point of 
divergence. The resulting Marangoni stresses act to suppress the surface motion, resisting it through an 
effective surface elasticity. Similarly, if the flow is characterized by a radial convergence, the resulting 
accumulation of surfactant in the region of convergence will result in Marangoni stresses that serve to 
resist it. It is this effective elasticity that gives soap films their longevity: the divergent motions that 
would cause a pure liquid film to rupture are suppressed by the surfactant layer on the soap film surface. 

The ability of surfactant to suppress flows with non-zero surface divergence is evident throughout 
the natural world. It was first remarked upon by Pliny the Elder, who rationalized that the absence of 
capillary waves in the wake of ships is due to the ships stirring up surfactant. This phenomenon was also 
widely known to spear-fishermen, who poured oil on the water to increase their ability to see their prey, 
and by sailors, who would do similarly in an attempt to calm troubled seas. Finally, the suppression of 
capillary waves by surfactant is at least partially responsible for the ‘footprints of whales’ (see Fig. 10.3). 
In the wake of whales, even in turbulent roiling seas, one seas patches on the sea surface (of characteristic 
width 5-10m) that are perfectly flat. These are generally acknowledged to result from the whales sweeping 
biomaterial to the surface with their tails, this biomaterial serving as a surfactant that suppresses capillary 
waves. 
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Surfactants and a murder mystery. From Nature, 22, 1880 : 
“In the autumn of 1878 a man committed a terrible crime in Somerset, which was for some time involved 

in deep mystery. His wife, a handsome and decent mulatto woman, disappeared suddenly and entirely from 

sight, after going home from church on Sunday, October 20. Suspicion immediately fell upon the husband, 

a clever young fellow of about thirty, but no trace of the missing woman was left behind, and there seemed 

a strong probability that the crime would remain undetected. On Sunday, however, October 27, a week 

after the woman had disappeared, some Somerville boatmen looking out towards the sea, as is their custom, 

were struck by observing in the Long Bay Channel, the surface of which was ruffled by a slight breeze, a 

streak of calm such as, to use their own illustration, a cask of oil usually diffuses around it 

when in the water. The feverish anxiety about the missing woman suggested some strange connection 

between this singular calm and the mode of her disappearance. Two or three days after - why not sooner 

I cannot tell you - her brother and three other men went out to the spot where it was observed, and from 

which it had not disappeared since Sunday, and with a series of fish-hooks ranged along a long line dragged 

the bottom of the channel, but at first without success. Shifting the position of the boat, they dragged a 

little further to windward, and presently the line was caught. With water glasses the men discovered that 

it had caught in a skeleton which was held down by some heavy weight. They pulled on the line; something 

suddenly gave was, and up came the skeleton of the trunk, pelvis, and legs of a human body, from which 

almost every vestige of flesh had disappeared, but which, from the minute fragments remaining, and the 

terrible stench, had evidently not lain long in the water. The husband was a fisherman, and Long Bay 

Channel was a favourite fishing ground, and he calculated, truly enough, that the fish would very soon 

destroy all means of identification; but it never entered into his head that as they did so their ravages, 

combined with the process of decomposition, set free the matter which was to write the traces of 

his crime on the surface of the water. The case seems to be an exceedingly interesting one; the calm 

is not mentioned in any book on medical jurisprudence that I have, and the doctors seem not to have had 

experience of such an occurrence. A diver went down and found a stone with a rope attached, by which 

the body had been held down, and also portions of the scalp and of the skin of the sole of the foot, and of 

clothing, by means of which the body was identified. The husband was found guilty and executed.” 
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Figure 10.4: The soap boat. A floating body (length 2.5cm) contains a small volume of soap, which serves 
as its fuel in propelling it across the free surface. The soap exits the rear of the boat, decreasing the local 
surface tension. The resulting fore-to-aft surface tension gradient propels the boat forward. The water 
surface is covered with Thymol blue, which parts owing to the presence of soap, which is thus visible as a 
white streak. 

10.3 Surfactant-induced Marangoni flows 

1. Marangoni propulsion 

Consider a floating body with perimeter C in contact with the free surface, which we assume for the sake 
of simplicity to be flat. Recalling that σ may be though of as a force per unit length in a direction tangent 
to the surface, we see that the total surface tension force acting on the body is: 

Fc = σsdℓ (10.3) 
C 

where s is the unit vector tangent to the free surface and normal to C, and dℓ is an increment of arc 
length along C. If σ is everywhere constant, then this line integral vanishes identically by the divergence 
theorem. However, if σ = σ(x), then it may result in a net propulsive force. The ‘soap boat’ may be 
simply generated by coating one end of a toothpick with soap, which acts to reduce surface tension (see 
right). The concomitant gradient in surface tension results in a net propulsive force that drives the boat 
away from the soap. We note that an analogous Marangoni propulsion technique arises in the natural 
world: certain water-walking insects eject surfactant and use the resulting surface tension gradients as 
an emergency mechanism for avoiding predation. Moreover, when a pine needle falls into a lake or pond, 
it is propelled across the surface in an analogous fashion owing to the influence of the resin at its base 
decreasing the local surface tension. 

2. Soap film stability 

Pinching a film increases the surface area, decreases 
Γ and so increases σ. Fluid is thus drawn in and 
the film is stabilized by the Marangoni elasticity. 

Figure 10.5: Fluid is drawn to a pinched area of a 
soap film through induced Marangoni stresses. 
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3. Vertical Soap Film 

•	 Vertical force balance: ρgh(z) = dσ . The weight of a soap dz 
film is supported by Marangoni stress. 

•	 Internal dynamics: note that film is dynamic (as are all
 
Marangoni flows), if it were static, its max height would
 
be ℓc. It is constantly drying due to the influence of gravity.
 

dσ du 
•	 On the surface: ∼ µ balance of Marangoni and visdz dx 
cous stresses. 

d2 u
•	 Inside: ρg ∼ µ dx2 Gravity-viscous. 

Figure 10.6: The weight of a vertical 
soap film is supported by Marangoni 10.4 Bubble motion 
stresses on its surface. 

Theoretical predictions for the rise speed of small drops or bub
bles do not adequately describe observations. Specifically, air bubbles rise at low Reynolds number at 
rates appropriate for rigid spheres with equivalent buoyancy in all but the most carefully cleaned fluids. 
This discrepancy may be rationalized through consideration of the influence of surfactants on the surface 
dynamics. The flow generated by a clean spherical bubble or radius a rising at low Re = Ua/ν is in
tuitively obvious. The interior flow is toroidal, while the surface motion is characterized by divergence 
and convergence at, respectively, the leading and trailing surfaces. The presence of surface contamination 
changes the flow qualitatively. 

The effective surface elasticity imparted by the surfactants acts to suppress the surface motion. Sur
factant is generaly swept to the trailing edge of the bubble, where it accumulates, giving rise to a local 
decrease in surface tension. The resulting for-to-aft surface tension gradient results in a Marangoni stress 
that resists surface motion, and so rigidifies the bubble surface. The air bubble thus moves as if its surface 
were stagnant, and it is thus that its rise speed is commensurate with that predicted for a rigid sphere: the 
no-slip boundary condition is more appropriate than the free-slip. Finally, we note that the characteristic 
Marangoni stress Δσ/a is most pronounced for small bubbles. It is thus that the influence of surfactants 
is greatest on small bubbles. 

Figure 10.7: A rising drop or bubble (left) is marked by internal circulation in a clean system that is 
absent in a contaminated, surfactant-laden fluid (right). Surfactant sticks to the surface, and the induced 
Marangoni stress rigidifies the drop surface. 
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11. Fluid Jets 

11.1 The shape of a falling fluid jet 

Consider a circular orifice of a radius a ejecting a flux Q of fluid density ρ and kinematic viscosity ν 
(see Fig. 11.1). The resulting jet accelerates under the influence of gravity −gẑ. We assume that the jet 
Reynolds number Re = Q/(aν) is sufficiently high that the influence of viscosity is negligible; furthermore, 
we assume that the jet speed is independent of radius, and so adequately described by U(z). We proceed 
by deducing the shape r(z) and speed U(z) of the evolving jet. 

Applying Bernoulli’s Theorem at points A and B: 

1 
ρU2 + ρgz + PA =

1 
ρU2(z) + PB (11.1) 

2 0 2 

The local curvature of slender threads may be expressed in terms of 
the two principal radii of curvature, R1 and R2: 

1 1 1 
∇ · n = + ≈ (11.2) 

R1 R2 r 

Thus, the fluid pressures within the jet at points A and B may be 
simply related to that of the ambient, P0: 

σ σ 
, PB ≈ P0 + (11.3) PA ≈ P0 + 

a r 

Substituting into (11.1) thus yields 

1 σ 1 σ 
ρU2 + ρgz + P0 + = ρU2(z) + P0 + (11.4) 

2 0 a 2 r 

from which one finds 
 1/2 

U(z)  2 z 2 ( a) 
= 1 + + 1−  (11.5) 

U0 
 Fr a We r  

     

acc. due to g dec. due to σ Figure 11.1: A fluid jet extruded 
where we define the dimensionless groups from an orifice of radius a ac

celerates under the influence of U2 INERTIA 
0

Fr = = = Froude Number (11.6) gravity. Its shape is influenced 
ga GRAV ITY 

both by the gravitational acceler
ρU

0

2a INERTIA ation g and the surface tension σ. 
σ CURV ATURE 

We = = = Weber Number (11.7) 
Note that σ gives rise to a gradi-

Now flux conservation requires that ent in curvature pressure within 
 r the jet, σ/r(z), that opposes the 

Q = 2π U(z)r(z)dr = πa2U0 = πr2U(z) (11.8) acceleration due to g. 
0 

from which one obtains 
( )

1/2 [

( )

]

−1/4 
r(z) U0 2 z 2 a 

= = 1 + + 1 − (11.9) 
a U(z) Fr a We r 

This may be solved algebraically to yield the thread shape r(z)/a, then this result substituted into (11.5) 
to deduce the velocity profile U(z). In the limit of We →∞, one obtains 

( )
−1/4 ( )1/2 

r 2gz U(z) 2gz 
= 1 + , = 1 + (11.10) 

a U
0

2 U0 U
0

2 
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11.2 The Plateau-Rayleigh Instability 

We here summarize the work of Plateau and Rayleigh on the instability 
of cylindrical fluid jets bound by surface tension. It is precisely this 
Rayleigh-Plateau instability that is responsible for the pinch-off of thin 
water jets emerging from kitchen taps (see Fig. 11.2). 

The equilibrium base state consists of an infinitely long quiescent 
cylindrical inviscid fluid column of radius R0, density ρ and surface 
tension σ (see Fig. 11.3). The influence of gravity is neglected. The 
pressure p0 is constant inside the column and may be calculated by 
balancing the normal stresses with surface tension at the boundary. 
Assuming zero external pressure yields 

σ 
p0 = σ∇ · n ⇒ p0 = . (11.11) 

R0 

We consider the evolution of infinitesimal varicose perturbations on 
the interface, which enables us to linearize the governing equations. 
The perturbed columnar surface takes the form: 

˜ R0 + ǫeωt+ikz R = , (11.12) 

where the perturbation amplitude ǫ ≪ R0, ω is the growth rate of 
the instability and k is the wave number of the disturbance in the z-
direction. The corresponding wavelength of the varicose perturbations 
is necessarily 2π/k. We denote by ũr the radial component of the 
perturbation velocity, ũy the axial component, and p̃ the perturbation 
pressure. Substituing these perturbation fields into the N-S equations 
and retaining terms only to order ǫ yields: 

∂ũr 1 ∂p̃
= − (11.13) Figure 11.2: The capillary-driven 

∂t ρ ∂r 
instability of a water thread 

∂ũz 1 ∂p̃
(11.14) falling under the influence of= − 

∂t ρ ∂z gravity. The initial jet diameter 
The linearized continuity equation becomes: is approximately 3 mm. 

∂ũr ũr ∂ũz 
+ + = 0 . (11.15) 

∂r r ∂z 
We anticipate that the disturbances in velocity and 
pressure will have the same form as the surface dis
turbance (11.12), and so write the perturbation ve
locities and pressure as: 

( )
ωt+ikz (ũr, ũz, p̃) = R(r), Z(r), P (r) e . (11.16) 

Substituting (11.16) into equations (11.13-11.15) 
yields the linearized equations governing the per
turbation fields: 

1 dP 
Momentum equations : ωR = − (11.17) 

ρ dr 

ik 
P (11.18) Figure 11.3: A cylindrical column of initial radius 

ρ 
ωZ = − 

R0 comprised of an inviscid fluid of density ρ, bound 
dR R by surface tension σ. 

Continuity: + + ikZ = 0 . (11.19) 
dr r 
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Eliminating Z(r) and P (r) yields a differential equation for R(r): 

2 d
2R dR (

r + r − 1 + (kr)2
) 
R = 0 . (11.20) 

dr2 dr 

This corresponds to the modified Bessel Equation of order 1, whose solutions may be written in terms of 
the modified Bessel functions of the first and second kind, respectively, I1(kr) and K1(kr). We note that 
K1(kr)→∞ as r → 0; therefore, the well-behavedness of our solution requires that R(r) take the form 

R(r) = CI1(kr) , (11.21) 

where C is an as yet unspecified constant to be determined later by application of appropriate boundary 
conditions. The pressure may be obtained from (11.21) and (11.17), and by using the Bessel function 

′identity I 0(ξ) = I1(ξ): 
ωρC ik 

P (r) = − I0(kr) and Z(r) = − P (r). (11.22) 
k ωρ 

We proceed by applying appropriate boundary conditions. The first is the kinematic condition on the free 
surface: 

∂R̃
= ũ · n ≈ ũr . (11.23) 

∂t 

Substitution of (11.21) into this condition yields 

ǫω 
C = . (11.24) 

I1(kR0) 

Second, we require a normal stress balance on the free surface: 

p0 + p̃ = σ∇ · n (11.25) 

( )

We write the curvature as σ∇ · n = 1 1+ , where R1 and R2 are the principal radii of curvature of R1 R2 

the jet surface: 
1 1 1 ǫ ωt+ikz = ≈ − e (11.26) 

R0 + ǫeωt+ikz R2R1 R0 0 

ωt+ikz 1
= ǫk2 e . (11.27) 

R2 

Substitution of (11.26) and (11.27) into equation (11.25) yields: 

σ ǫσ ( ) 
ωt+ikz p0 + p̃ = − 

R2 1− k2R
0

2 e (11.28) 
R0 0 

Cancellation via (11.11) yields the equation for p̃ accurate to order ǫ: 

( ) 
ωtikz p̃ = − 

ǫσ 
1− k2R2 e . (11.29) 

R2 0

0 

Combining (11.22), (11.24) and (11.29) yields the dispersion relation, that indicates the dependence of 
the growth rate ω on the wavenumber k: 

ω2 σ I1(kR0) ( )
= kR0 1− k2R2 (11.30) 

0ρR3 I0(kR0)0 

We first note that unstable modes are only possible when 

kR0 < 1 (11.31) 
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The column is thus unstable to disturbances whose 
wavelengths exceed the circumference of the cylinder. 
A plot of the dependence of the growth rate ω on the 
wavenumber k for the Rayleigh-Plateau instability is 
shown in Fig. 11.4. 
The fastest growing mode occurs for kR0 = 0.697, i.e. 
when the wavelength of the disturbance is 

λmax ≈ 9.02R0 (11.32) 

By inverting the maximum growth rate ωmax one may 
estimate the characteristic break-up time: 

� Figure 11.4: The dependence of the growth 
ρR

0

3 

tbreakup ≈ 2.91 (11.33) rate ω on the wavenumber k for the Rayleigh
σ Plateau instability. 

σR . µν 
Note: In general, pinch-off depends on Oh = 

( )1/2 
At low Oh, we have seen that τpinch ∼ ρR2 

, λ = 9.02R.σ 

At high Oh, when viscosity is important, τpinch ∼ µR , λ increases with µ.σ 
A water jet of diameter 1cm has a characteristic break-up time of about 1/8s, which is consistent with 
casual observation of jet break-up in a kitchen sink. 
Related Phenomena: Waves on jets 
When a vertical water jet impinges on a horizontal reservoir of water, a field of standing waves may be 
excited on the base of the jet (see Fig. 11.5). The wavelength is determined by the requirement that the 
wave speed correspond to the local jet speed: U = −ω/k. Using our dispersion relation (11.30) thus yields 

ω2 σ I1(kR0) ( )
U2 = = 1− k2R2 (11.34) 

0k2 ρkR2 I0(kR0)0 

Provided the jet speed U is known, this equation may be solved in order to deduce the wavelength of the 
waves that will travel at U and so appear to be stationary in the lab frame. For jets falling from a nozzle, 
the result (11.5) may be used to deduce the local jet speed. 

11.3 Fluid Pipes 

The following system may be readily observed in a kitchen sink. When the volume flux exiting the tap 
is such that the falling stream has a diameter of 2 − 3mm, obstructing the stream with a finger at a 
distance of several centimeters from the tap gives rise to a stationary field of varicose capillary waves 
upstream of the finger. If the finger is dipped in liquid detergent (soap) before insertion into the stream, 
the capillary waves begin at some critical distance above the finger, below which the stream is cylindrical. 
Closer inspection reveal that the surface of the jet’s cylindrical base is quiescent. 

An analogous phenomenon arises when a vertical fluid jet impinges on a deep water reservoir (see 
Fig. 11.5). When the reservoir is contaminated by surfactant, the surface tension of the reservoir is 
diminished relative to that of the jet. The associated surface tension gradient draws surfactant a finite 
distance up the jet, prompting two salient alterations in the jet surface. First, the surfactant suppresses 
surface waves, so that the base of the jet surface assumes a cylindrical form (Fig. 11.5b). Second, the jet 
surface at its base becomes stagnant: the Marangoni stresses associated with the surfactant gradient are 
balanced by the viscous stresses generated within the jet. The quiescence of the jet surface may be simply 
demonstrated by sprinkling a small amount of talc or lycopodium powder onto the jet. The fluid jet thus 
enters a contaminated reservoir as if through a rigid pipe. 

A detailed theoretical description of the fluid pipe is given in Hancock & Bush (JFM, 466, 285-304). 
We here present a simple scaling that yields the dependence of the vertical extent H of the fluid pipe on 
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J 
hx 

Note: Surface area of rim/ length: p = 2πR where m = ρhx = πρR2 
⇒ R = where R is the rim π 

J 
√ 

hx radius. Therefore the rim surface energy is σP = σ2π = 2σ hxπ. Total surface energy of the system π 
[ ]

is σ 2x + 2(πhx)1/2 . 
)1/2SArim ∼ 2

√

hxπ 
( 
hπ Scale:	 ∼ ≪ 1 for x ≫ h.SAsheet 2x x 

The rim surface area is thus safely neglected once the sheet has retracted a distance comparable to its
 
thickness.
 
Some final comments on soap film rupture.
 

1. for dependence on geometry and influence of µ, see
 
Savva & Bush (JFM 2009).
 

√ 
2. form of sheet depends on Oh = µ .√

2hρσ 

3. The growing rim at low Oh is subject to Ra-Plateau 
⇒ scalloping of the retracting rim ⇒ rim pinches off
 
into drops
 

4. At very high speed, air-induced shear	 stress leads
 
to flapping. The sheet thus behaves like a flapping
 
flag, but with Marangoni elasticity.
 Figure 12.5: The different shapes of a retract

ing sheet and rim depend on the value of Oh. 

Figure 12.6: The typical evolution of a retracting sheet. As the rim retracts and engulfs fluid, it eventually 
becomes Rayleigh-Plateau unstable. Thus, it develops variations in radius along its length, and the 
retreating rim becomes scalloped. Filaments are eventually left by the retracting rim, and pinch off 
through a Rayleigh-Plateau instability, the result being droplets. 
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12.1 

12. Instability Dynamics
 

We proceed by considering the surface tension-induced 
instability of a fluid coating on a cylindrical fiber. 
Define mean thickness 

 λ1 
h∗ = h(x)dx (12.1) 

λ 0 

Local interfacial thickness 

Capillary Instability of a Fluid Coating on a Fiber 

h(x) = h∗ + ǫ cos kx (12.2) 
Figure 12.1: Instability of a fluid coating on 

Volume conservation requires: a cylindrical fiber. 

   λ λ λ 

π(r + h)2dx = π(r + h0)
2dx ⇒ (r + h∗ + ǫ cos kx)2dx = (r + h0)

2λ ⇒ 
0 0 0 

ǫ2 1 ǫ2 

(r + h∗)2λ+ ǫ2 λ = (r + h0)
2λ ⇒ (r + h∗)2 = (r + h0)

2 
− = (r + h0)

2 1− 
2 2 2 (r + h0)2 

which implies 
1 ǫ2 

h∗ = h0 − (12.3) 
4 r + h0 

Note: 
h∗ < h0 which suggests instability. 

f λ
So, when does perturbation reduce surface energy? i.e. when is 2π(r + h)ds < 2π(r + h0)λ?0 J

( ) [ ]1/2dh 1
Note: ds2 = dh2 + dx2 

⇒ ds = dx 1 + dx 2
≈ dx 1 + ǫ2k2 sin2 kx

f λ f λ 1 1 (r + h∗)ǫ2k2λ.(r + h)ds = (r + h∗ + ǫ cos kx)(1 + ǫ2k2 sin2 kx)1/2dx = (r + h∗)λ+
0 0 2 4 

1 (r + h∗)ǫ2k2λ < (r + h0)λ.So the inequality holds provided (r + h∗)λ+ 
4 

Substitute for h∗ from (12.3): 
1 ǫ2 1

(r + h∗)ǫ2k2− + < 0 (12.4) 
4 r + h0 4

We note that the result is independent of ǫ: 

k2 < (r + h0)
−1(r + h∗)−1 

≈ 
1 

(12.5) 
(r + h0)2 

i.e. unstable wavelengths are prescribed by 

2π 
λ = > 2π(r + h0) (12.6) 

k 

as in standard inviscid Ra-P. All long wavelength disturbances will grow. Which grows the fastest? That 
is determined by the dynamics (not just geometry). We proceed by considering the dynamics in the thin 
film limit, h0 ≪ r, for which we obtain the lubrication limit. 
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12.2 Dynamics of Instability (Rayleigh 1879)

Physical picture: Curvature pressure induced by perturbation drives Couette flow that is resisted by
viscosity

d2v dp
η − = 0 (12.7)
dy dx

where dp is the gradient in curvature pressure, which is independent of y ( a generic feature of lubricationdx
problems), so we can integrate the above equation to obtain

1 dp
v(y) =

(
y2
− hy

)

(12.8)
µ dx 2

Flux per unit length:

Q =

∫ h 1 dp
v(y)dy =

0

− h3 (12.9)
3µ dx

Conservation of volume in lubrication problems requires that Q(x+ dx)−Q(x) = −∂hdx∂t ⇒

dQ h3 d2
=

dx
−

0
p ∂h
=

3µ dx2
− (12.10)

∂t

Curvature pressure

p(x) = σ

(
1 1

+ σ
R R2

)

=
1

(
1

r + h
− hxx

)

(12.11)

Substitute (12.11) into (12.10):

∂h σh3

= 0
∂2 1

∂t 3 ∂x2

[

σhxx (12.12)
µ r + h(x)

−

]

Now h(x, t) = h∗ + ǫ(t) cos kx ⇒ hx = −ǫk sin kx, hxx = −ǫ2k cos kx, ht =
dǫ cos kxdt

So cos kxdǫ σh3 2

= 0
σh3 2

ǫ cos kx k k4 dǫ = βǫ where β = 0 k k4dt 3µ

[

(r+h)2 − ⇒ dt 3µ (r+h0)
2 −

Fastest growing mode when dβ

]

8

[ ]

= 0 = 2k
dk (r+h0)

2 − 4k∗3 so

λ∗ = 2
√

2π (r + h0) (12.13)

is the most unstable wavelength for the viscous mode.

Note:

• Recall that for classic Ra-P on a cylindrical fluid thread
λ∗ ∼ 9R.

12µ(r+h )
4

• We see here the timescale of instability: τ∗ = 0

3 .
σh

0

• Scaling Argument for Pinch-off time.

When h≪ r, ∇
h3

p ∼ σh0 1
∼ µ v

2 2 ⇒ v ∼ r 0 σh0

r r h
0

τ ∼ µ r3 ⇒

µr4
τpinch ∼ (12.14)

σh3

0 Figure 12.2: Growth rate β as a func-
tion of wavenumber k for the system de-
picted in Fig. 12.1.
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12.3. Rupture of a Soap Film (Culick 1960, Taylor 1960) Chapter 12. Instability Dynamics

12.3 Rupture of a Soap Film (Culick

1960, Taylor 1960)

We assume O = µνh ≪ 1, so that viscous effects are negligible.σR
The driving curvature force is thus resisted principally by fluid
inertia. Assume dynamics is largely 2D (true for a planar film,
or for bubble burst for r(t)≫ h).
Retraction of a Planar Sheet

Note: Force/ length acting on the rim may be calculated exactly
via Frenet-Serret

FC =

∫

σ (∇ · n)ndl (12.15) Figure 12.3: Rupture of a soap film of
C

thickness h.

where (∇ · n)n = dt
dl ∫

dt
⇒ FC = σ dl = σ (t1

C dl
− t2) = 2σx̂ (12.16)

At time t = 0, planar sheet of thickness h punctured at x = 0, and retracts in x̂ direction owing to F c.
Observation: The rim engulfs the film, and there is no upstream disturbance.

Figure 12.4: Surface-tension-induced retraction of a planar sheet of uniform thickness h released at time
t = 0.

Rim mass: m(x) = ρhx and speed v = dx .dt
Since the inertial force on the rim is equal to the rate of change of rim momentum

d d
2
dm dv 1

2
dm 1 d

FI = (mv) = v mv = v +mv = v + (mv2) . (12.17)
dt dx dx Dx 2 dx 2 dx

The force balance us between the curvature force and the inertial force

d 1 1
2σ = ( mv2) + ρhv2 (12.18)

dx 2 2

Integrate from 0 to x:
1

2σx = ρhxv2
1

+ ρh
2 2

∫ x

v2dx (12.19)
0

The first term is the surface energy released per unit length, the 2nd term the K.E. of the rim, and the
3rd term the energy required to accelerate the rim. Now we assume v is independent of x (as observed in

x
experiments), thus

∫
v2dx = xv2 and the force balance becomes 2σx = ρhxv2

0
⇒

( )1/2
2σ

v = is the retraction speed (Taylor-Culick speed) (12.20)
ρh

E.g. for water-soap film, h ∼ 150µm ⇒ v ∼ 102cm/s.
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12.3. Rupture of a Soap Film (Culick 1960, Taylor 1960) Chapter 12. Instability Dynamics 

J 
hx 

Note: Surface area of rim/ length: p = 2πR where m = ρhx = πρR2 
⇒ R = where R is the rim π 

J 
√ 

hx radius. Therefore the rim surface energy is σP = σ2π = 2σ hxπ. Total surface energy of the system π 
[ ]

is σ 2x + 2(πhx)1/2 . 
)1/2SArim ∼ 2

√

hxπ 
( 
hπ Scale:	 ∼ ≪ 1 for x ≫ h.SAsheet 2x x 

The rim surface area is thus safely neglected once the sheet has retracted a distance comparable to its
 
thickness.
 
Some final comments on soap film rupture.
 

1. for dependence on geometry and influence of µ, see
 
Savva & Bush (JFM 2009).
 

√ 
2. form of sheet depends on Oh = µ .√

2hρσ 

3. The growing rim at low Oh is subject to Ra-Plateau 
⇒ scalloping of the retracting rim ⇒ rim pinches off
 
into drops
 

4. At very high speed, air-induced shear	 stress leads
 
to flapping. The sheet thus behaves like a flapping
 
flag, but with Marangoni elasticity.
 Figure 12.5: The different shapes of a retract

ing sheet and rim depend on the value of Oh. 

Figure 12.6: The typical evolution of a retracting sheet. As the rim retracts and engulfs fluid, it eventually 
becomes Rayleigh-Plateau unstable. Thus, it develops variations in radius along its length, and the 
retreating rim becomes scalloped. Filaments are eventually left by the retracting rim, and pinch off 
through a Rayleigh-Plateau instability, the result being droplets. 
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13. Fluid Sheets 

13.1 Fluid Sheets: shape and stability 

The dynamics of high-speed fluid sheets was first considered by Savart (1833) after his early work on 
electromagnetism with Biot, and was subsequently examined by Rayleigh (1879), then in a series of 
papers by Taylor (Proc. Roy. Soc., 1959 ). They have recently received a great deal of attention owing to 
their relevance in a number of spray atomization processes. Such sheets may be generated from a variety 
of source conditions, for example, the collision of jets on rigid impactors, and jet-jet collisions. There 
is generally a curvature force acting on the sheet edge which acts to contain the fluid sheet. For a 2D 
(planar) sheet, the magnitude of this curvature force is given by 

1 
F c = σ (∇ · n)ndl (13.1) 

C 

Using the first Frenet-Serret equation (Lecture 2, Appendix B), 

dt 
(∇ · n)n = (13.2) 

dl 

thus yields 1
dt 

F c = σ dl = σ (t1 − t2) = 2σx (13.3) 
C dl 

There is thus an effective force per unit length 2σ along the length of the sheet rim acting to contain the 
rim. We now consider how this result may be applied to compute sheet shapes for three distinct cases: i) 
a circular sheet, ii) a lenticular sheet with unstable rims, and iii) a lenticular sheet with stable rims. 
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13.2. Circular Sheet Chapter 13. Fluid Sheets 

Figure 13.1: A circular fluid sheet generated by the impact of a water jet on a circular impactor. The 
impacting circle has a diameter of 1 cm. 

13.2 Circular Sheet 

We consider the geometry considered in Savart’s original experiment. A vertical fluid jet strikes a small 
horizontal circular impactor. If the flow rate is sufficiently high that gravity does not influence the sheet 
shape, the fluid is ejected radially, giving rise to a circular free fluid sheet (Fig. 13.1). 

ρU2DFor We = > 1000, the circular sheet is subject to the flapping instability. We thus consider σ 
UR 

∼ 30·10 U2 
We < 1000, for which the sheet is stable. Scaling: Re = ∼ 3·104 

≫ 1. Fr = 
2 

∼ 30
∼ 0.1ν 0.01 gR 103 

·10 
so inertia dominates gravity.
 
The sheet radius is prescribed by a balance of radial forces; specifically, the inertial force must balance
 
the curvature force:
 

ρu2h = 2σ (13.4) 

Continuity requires that the sheet thickness h depend on the speed u, jet flux Q and radius r as 

Q 1 
h(r) = ∼ (13.5) 

2πru r 

Experiments (specifically, tracking of particles suspended within the sheet) indicate that the sheet speed u 
is independent of radius; consequently, the sheet thickness decreases as 1/r. Substituting the form (13.5) 
for h into the force balance (13.4) yields the sheet radius, or so-called Taylor radius: 

ρQu 
RT = (13.6) 

4πσ 

The sheet radius increases with source flux and sheet speed, but decreases with surface tension. We note 
that the fluid proceeds radially to the sheet edge, where it accumulates until going unstable via a modified 
Rayleigh-Plateau instability, often referred to as the Rayleigh-Plateau-Savart instability, as it was first 
observed on a sheet edge by Savart. 
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13.3 Lenticular sheets with unstable rims (Taylor 1960)
 

Figure 13.2: A sheet generated by the collision of water jets at left. The fluid streams radially outward in 
a thinning sheet; once the fluid reaches the sheet rim, it is ejected radially in the form of droplets. From 
G.I. Taylor (1960). 

We now consider the non-axisymmetric fluid , such as may be 
formed by the oblique collision of water jets (see Fig. 13.2), a ge
ometry originally considered by Taylor (1960). Fluid is ejected 
radially from the origin into a sheet with flux distribution given 
by Q(θ), so that the volume flux flowing into the sector between 
θ and θ + dθ is Q(θ)dθ. As in the previous case of the circular 
sheet, the sheet rims are unstable, and fluid drops are contin
uously ejected therefrom. The sheet shape is computed in a 
similar manner, but now depends explicitly on the flux distri
bution within the sheet, Q(θ). The normal force balance on the 
sheet edge now depends on the normal component of the sheet 
speed, un: 

ρu2 (θ)h(θ) = 2σ (13.7) n

The sheet thickness is again prescribed by (13.5), but now Q = 
Q(θ), so the sheet radius R(θ) is given by the Taylor radius 

ρu2 Q(θ)nR(θ) = (13.8) 
4πσu 

Computing sheet shapes thus relies on either experimental mea
surement or theoretical prediction of the flux distribution Q(θ) 
within the sheet. 

13.4 Lenticular sheets with stable rims 

In a certain region of parameter space, specifically, with 
fluids more viscous than water, one may encounter fluid sheets with stable rims (see www
math.mit.edu/∼bush/bones.html). The force balance describing the sheet shape must change accordingly. 
When rims are stable, fluid entering the rim proceeds along the rim. As a result, there is a centripetal 
force normal to the fluid rim associated with flow along the curved rim that must be considered in order 
to correctly predict the sheet shapes. 

Figure 13.3: The “Fluid fishbone” 
formed by the collision of two jets of 
a glycerine-water solution. Bush & 
Hasha (2004). 
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13.4. Lenticular sheets with stable rims Chapter 13. Fluid Sheets 

The relevant geometry is presented in Fig. 13.4. 
r(θ) is defined to be the distance from the origin 
to the rim centreline, and un(θ) and ut(θ) the nor
mal and tangential components of the fluid velocity 
in the sheet where it contacts the rim. v(θ) is de
fined to be the velocity of flow in the rim, R(θ) 
the rim radius, and Ψ(θ) the angle between the po
sition vector r and the local tangent to the rim 
centreline. Finally, rc(θ) is defined to be the ra
dius of curvature of the rim centreline, and s the 
arc length along the rim centreline. The differential 
equations governing the shape of a stable fluid rim 
bounding a fluid sheet may be deduced by consid
eration of conservation of mass in the rim and the 
local normal and tangential force balances at the 
rim. 

For a steady sheet shape, continuity requires 
that the volume flux from the sheet balance the 
tangential gradient in volume flux along the rim: 

∂ (
0 = unh− vπR2

) 
(13.9) 

∂s 

The normal force balance requires that the curvature force associated with the rim’s surface tension 
balance the force resulting from the normal flow into the rim from the fluid sheet and the centripetal force 
resulting from the flow along the curved rim: 

Figure 13.4: A schematic illustration of a fluid sheet 
bound by stable rims. 

2ρπR2v
ρu2 h+ = 2σ (13.10) n rc 

Note that the force balance (13.7) appropriate for sheets with unstable rims is here augmented by the 
centripetal force. The tangential force balance at the rim requires a balance between tangential gradients 
in tangential momentum flux, tangential gradients in curvature pressure, viscous resistance to stretching 
of the rim, and the tangential momentum flux arriving from the sheet. For most applications involving 
high-speed sheets, the Reynolds number characterizing the rim dynamics is sufficiently large that viscous 
resistance may be safely neglected. Moreover, the curvature term ∇ · n̂ generally depends on θ; however, 
accurate to O(R/rc), we may use ∇ · n̂ = 1/R. One thus obtains: 

∂ (
2
) πR2σ ∂ 

( 
1
)

πR2 v = hutun − . (13.11) 
∂s ρ ∂s R

Equations (13.9)-(13.11) must be supplemented by the continuity relation, 

Q(θ)
h(r, θ) = (13.12) 

u0r 

in addition to a number of relations that follow directly from the system geometry: 

1 sinΨ 
( 
∂Ψ 

)

un = u0 sinΨ , uT = u0 cosΨ , = + 1 (13.13) 
rc r ∂θ 

The system of equations (13.9-13.13) may be nondimensionalized, and reduce to a set of coupled ordinary 
equations in the four variables r(θ), v(θ), R(θ) and Ψ(θ). Given a flux distribution, Q(θ), the system may 
be integrated to deduce the sheet shape. 
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13.5 Water Bells 

All of the fluid sheets considered thus far have been confined to a plane. In §13.1, we considered circular 
sheets generated from a vertical jet striking a horizontal impactor. The sheet remains planar only if 
the flow is sufficiently fast that the fluid reaches its Taylor radius before sagging substantially under the 
influence of gravity. Decreasing the flow rate will make this sagging more pronounced, and the sheet will 
no longer be planar. While one might expect the sheet to fall along a parabolic trajectory, the toroidal 
curvature of the bell induces curvature pressures that act to close the sheet. Consequently, the sheet may 
close upon itself, giving rise to a water bell, as illustrated in Fig. 13.5. A recent review of the dynamics 
of water bells has been written by Clanet (Ann.Rev.). We proceed by outlining the theory required to 
compute the shapes of water bells. 

We consider a fluid sheet extruded radially at a speed u0 and subsequently sagging under the influence 
of a gravitational field g = −gẑ. The inner and outer sheet surfaces are characterized by a constant 
surface tension σ. The sheet has constant density ρ and thickness t(r, z). Q is the total volume flux in 
the sheet. The characteristic Re is assumed to be sufficiently high so that the influence of viscosity is 
negligible. 

We define the origin to be the center of the impact plate; r and z are, respectively, the radial and 
vertical distances from the origin. u is the sheet speed, and φ the angle made between the sheet and the 
vertical. rc is the local radius of curvature of a meridional line, and s the arc length along a meridional 
line measured from the origin. Finally, ΔP is the pressure difference between the outside and inside of 
the bell as may be altered experimentally. 

Flux conservation requires that 

Q = 2πrtu	 (13.14) 

while Bernoulli’s Theorem indicates that 

2 2 u	 = u + 2gz (13.15) 
0 

The total curvature force acting normal to the bell surface 
is given by 

( 
1 

)
cosφ 

2σ∇ · n = 2σ + (13.16) 
rc r 

Note that the factor of two results from there being two Figure 13.5: A water bell produced by the 
free surfaces. The force balance normal to the sheet thus impact of a descending water jet on a solid 
takes the form: impactor. The impactor radius is 1 cm. Fluid 

is splayed radially by the impact, then sags 
2σ 2σ cosφ	 ρtu2 

+ − ΔP + ρgt sinφ− = 0 (13.17) under the influence of gravity. The sheet may 
rc r rc close on itself owing to the azimuthal curva

ture of the bell. Equations (13.14), (13.15) and (13.17) may be appropri
ately nondimensionalized and integrated to determine the
 
shape of the bell.
 
Note:
 

•	 the bell closes due to the out-of-plane curvature 

•	 the influence of g is reflected in top-bottom asymmetry. Note that g is not significant in Fig. 13.5. 
The relevant control parameter is Fr = INERTIA/GRAVITY = U2/gL ∼ 1 

•	 if deflected upwards by the impactor, the bell with also close due to σ 
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13.6 Swirling Water Bell 

Consider the water bell formed with a swirling jet (Bark et al. 1979 ).
 
Observation: Swirling bells don’t close. Why not?
 
Conservation of angular momentum: as r decreases, v increases as does FC ∼ v2/r.
 
Sheet velocity:
 

v = uês + vêθ (13.18) 
'-v" '-v" 

in plane swirl 

Continuity: Q = 2πrhu (13.19) 

Conservation of Angular Momentum: vr = v0r0 (13.20) 

2 2 2Energy conservation: u + v = 2gz + u + v0z (13.21) 
0 

2σ 2σ cosφ ρhu2 ρhv2 cosφ 
Normal force balance: + + ρgh sinφ = ΔP + + (13.22) 

R r R r 

Evidently, the bell fails to close owing to the influence of the centripetal forces induced by the swirl. 

Figure 13.6: Swirling water bells extruded from a rotating nozzle. 
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14. Instability of Superposed Fluids
 

Figure 14.1: Wind over water: A layer of fluid of density ρ+ moving with relative velocity V over a layer 
of fluid of density ρ− . 

Define interface: h(x, y, z) = z − η(x, y) = 0 so that ∇h = (−ηx,−ηy, 1). 
The unit normal is given by 

∇h (−ηx,−ηy, 1) 
n̂ = =	 (14.1) 

|∇h| ( )1/2 
ηx 
2 + ηy 

2 + 1

Describe the fluid as inviscid and irrotational, as is generally appropriate at high Re. 
Basic state: η = 0 , u = ∇φ , φ = 

2
Vx for z±.∓ 1 

Perturbed state: φ = ∓ 1Vx + φ± in z±, where φ± is the perturbation field. 2

Solve 
∇ · u = ∇2φ± = 0 (14.2) 

subject to BCs: 

1.	 φ± → 0 as z → ±∞ 

∂η 2.	 Kinematic BC: = u · n,∂t 
where 

( )
1 1 ∂φ± ∂φ± ∂φ± 

u = ∇ ∓ Vx + φ± = ∓ V x̂+ x̂+ ŷ + ẑ (14.3) 
2 2 ∂x ∂y ∂z 

from which ( )
∂η 1 ∂φ± ∂φ± ∂φ± 

= ∓ V + (−ηx) + (−ηy) +	 (14.4) 
∂t 2 ∂x ∂y ∂z 

Linearize: assume perturbation fields η, φ± and their derivatives are small and therefore can neglect 
their products. 

∂φ±Thus η̂ ≈ (−ηx,−ηy, 1) and 
∂η = ± 1V ηx + ⇒∂t 2 ∂z 

∂φ± ∂η 1 ∂η 
= ∓ V on z = 0	 (14.5) 

∂z ∂t 2 ∂x 

3.	 Normal Stress Balance: p− − p+ = σ∇ · n on z = η.
 
Linearize: p− − p+ = −σ (ηxx + ηyy) on z = 0.
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Chapter 14. Instability of Superposed Fluids 

We now deduce p± from time-dependent Bernoulli: 

ρ 
∂φ 1 

ρu2 + p+ ρgz = f(t) (14.6) + 
∂t 2 

2 1 ∂φ±where u = 
4
V 2 
∓ V ∂x + H.O.T. 

Linearize: ( )
∂φ± 1 ∂φ±

ρ± + ρ± ∓V + p± + ρ±gη = G(t) (14.7) 
∂t 2 ∂x 

so 

∂φ± ∂φ− V ∂φ− ∂φ+ 
p− − p+ = (ρ+ − ρ−)gη + (ρ+ − ρ− ) + (ρ− + ρ+ ) = −σ(ηxx + ηyy) (14.8) 

∂t ∂t 2 ∂x ∂x 

is the linearized normal stress BC. Seek normal mode (wave) solutions of the form 

iαx+iβy+ωt η = η0e (14.9) 

∓kz iαx+iβy+ωt φ± = φ0±e e (14.10) 

where ∇2φ± = 0 requires k2 = α2 + β2 . 
∂φ± ∂η V ∂η ∓ 1Apply kinematic BC: = at z = 0 ⇒∂z ∂t 2 ∂x 

1 
∓kφ0± = ωη0 ∓ iαV η0 (14.11) 

2 

Normal stress BC: 

k2ση0 = −g(ρ− − ρ+)η0 + ω(ρ+φ0+ − ρ−φ0−) + 
1 
iαV (ρ+φ0+ + ρ−φ0−) (14.12) 

2
 

Substitute for φ0± from (14.11):
 

[ ] [ ]
1 1 1 1 1 

−k3σ = ω ρ+(ω − iαV ) + ρ−(ω + iαV ) + gk(ρ− − ρ+) + iαV ρ+(ω − iαV ) + ρ−(ω + iαV )
2 2 2 2 2 

so ( 
ρ− − ρ+ 

) 
1 

2ω2 + iαV ω − α2V + k2C
0

2 = 0 (14.13) 
ρ− + ρ+ 4 

( 
ρ−−ρ+ 

) 
g σwhere C2 

≡ + k.
0 ρ−+ρ+ k ρ−+ρ+ 

Dispersion relation: we now have the relation between ω and k 

1 
( 
ρ+ − ρ− 

) [ 
ρ−ρ+ 2 

]1/2 

ω = i k · V ± (k · V ) − k2C2 (14.14) 
02 ρ− + ρ+ (ρ− + ρ+)2 

where k = (α, β), k2 = α2 + β2 .
 
The system is UNSTABLE if Re (ω) > 0, i.e. if
 

ρ+ρ− 2 
C2(k · V ) > k2 (14.15) 

ρ− + ρ+
0 

Squires Theorem:
 
Disturbances with wave vector k = (α, β) parallel to V are most unstable. This is a general property of
 
shear flows.
 

We proceed by considering two important special cases, Rayleigh-Taylor and Kelvin-Helmholtz instability.
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14.1. Rayleigh-Taylor Instability Chapter 14. Instability of Superposed Fluids 

14.1 Rayleigh-Taylor Instability 

We consider an initially static system in which heavy fluid overlies light fluid: ρ+ > ρ−, V = 0. Via 
(14.15), the system is unstable if 

ρ− − ρ+ g σ 
C2 + k < 0 (14.16) 

0 
= 

ρ+ρ− k ρ− + ρ+ 

σk2 
4π2σi.e. if ρ+ − ρ− > g = gλ2 . 

J 
σThus, for instability, we require: λ > 2πλc where λc = is the capillary length. 

Δρg 

Heuristic Argument: 
Change in Surface Energy: 

[f λ 
] 

1ΔES = σ · Δl = σ
0 
ds− λ = 

4
σǫ2k2λ. 

arc length 
Figure 14.2: The base state and the per-Change in gravitational potential energy: 

f λ ( ) turbed state of the Rayleigh-Taylor system, = − 1ρg h2 
− h2 dx = − 1ρgǫ2λ.ΔEG 0 2 0 4 heavy fluid over light. When is the total energy decreased?
 

When ΔEtotal = ΔES + ΔEG < 0, i.e. when ρg > σk2 ,
 
so λ > 2πlc.
 
The system is thus unstable to long λ.
 
Note:
 

1. The system is stabilized to small λ disturbances by
 
σ
 

2. The system is always unstable for suff. large λ 

3. In a finite container with width smaller than 2πλc,
 
the system may be stabilized by σ.
 

4. System may be stabilized by temperature gradients
 
since Marangoni flow acts to resist surface defor
mation. E.g. a fluid layer on the ceiling may be
 
stabilized by heating the ceiling.
 

Figure 14.3: Rayleigh-Taylor instability may 
be stabilized by a vertical temperature gradi
ent. 
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14.2. Kelvin-Helmholtz Instability Chapter 14. Instability of Superposed Fluids 

14.2 Kelvin-Helmholtz Instability 

We consider shear-driven instability of a gravitationally stable base state. Specifically, ρ− ≥ ρ+ so the 
system is gravitationally stable, but destabilized by the shear. 

2 2Take k parallel to V , so (V · k) = k2V and the instability criterion becomes: 

g
2 + σk (14.17) ρ−ρ+V > (ρ− − ρ+)

k 

Equivalently, 

2 
λ 2π 

+ σ (14.18) ρ−ρ+V > (ρ− − ρ+) g
2π λ 

Note: 
Figure 14.4: Kelvin-Helmholtz instability: a gravi

1. System stabilized to short λ disturbances by tationally stable base state is destabilized by shear. 
surface tension and to long λ by gravity. 

2. For any given λ (or k), one can find a critical
 
V that destabilizes the system.
 

Marginal Stability Curve: 

( 
ρ− − ρ+ g 1 

)1/2 

V (k) = + σk (14.19) 
ρ−ρ+ k ρ−ρ+ 

dV d 2V (k) has a minimum where = 0, i.e. V = dk dk
0. J 
This implies − Δρ + σ = 0 ⇒ kc = Δρg = k2 σ 
1 .lcap √

2The corresponding Vc = V (kc) = ρ−ρ+ 
Δρgσ is the min

imal speed necessary for waves. 

Figure 14.5: Fluid speed V (k) required for 
the growth of a wave with wavenumber k. 

E.g. Air blowing over water: (cgs) 
√ 

2 2V = 1 · 103 · 70 ⇒ Vc ∼ 650cm/s is the mini-c 1.2·10−3 

mum wind speed required to generate waves. 
J 

1·103 
−1These waves have wavenumber kc = ≈ 3.8 cm , so λc = 1.6cm. They thus correspond to capillary 

70 

waves. 
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15. Contact angle hysteresis, Wetting 
of textured solids 
Recall: In Lecture 3, we defined the equilibrium contact angle θe, which is prescribed by Young’s Law:
 
cos θe = (γSV − γSL) /γ as deduced from the horizontal force balance at the contact line.
 
Work done by a contact line moving a distance dx:
 

Figure 15.1: Calculating the work done by moving a contact line a distance dx. 

dW = (γSV − γSL) dx − γ cos θedx (15.1) 
        

contact line motion from creating new interface 

In equilibrium: dW = 0, which yields Young’s Law. It would be convenient if wetting could be simply 
characterized in terms of this single number θe. Alas, there is: 

15.1 Contact Angle Hysteresis 

For a given solid wetting a given liquid, there is a range of possible contact angles: θr < θ < θa, i.e. the 
contact angle lies between the retreating and advancing contact angles; θr and θa, respectively. That is, 
many θ values may arise, depending on surface, liquid, roughness and history. 

Filling a drop Draining a drop 

• begin with a drop in equilibrium with θ = θe • begin with a drop in equilibrium with θ = θe 

• fill drop slowly with a syringe 
• drain drop slowly with a syringe 

• θ increases progressively until attaining θa, at 
• θ decreases progressively until attaining θr, at which point the contact line advances 
which point the contact line retreats 

Origins: Contact line pinning results from surface heterogeneities (either chemical or textural), that 
present an energetic impediment to contact line motion. 
The pinning of a contact line on impurities leads to increased interfacial area, and so is energetically 

costly. Contact line motion is thus resisted. 

Contact Line Pinning at Corners 
A finite range of contact angles can arise at a corner θ1 < θ < π− φ+ θ1; thus, an advancing contact line 
will generally be pinned at corners. Hence surface texture increases contact angle hysteresis. 
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15.1. Contact Angle Hysteresis Chapter 15. Contact angle hysteresis, Wetting of textured solids

Figure 15.2: Pinning of a contact line retreating from left to right due to surface impurities.

Figure 15.3: A range of contact angles is possible at a corner.

Manifestations of Contact Angle Hysteresis

I. Liquid column trapped in a capillary tube.
θ2 can be as large as θa; θ1 can be as small as
θr. In general θ2 > θ1, so there is a net cap-
illary force available to support the weight of the
slug.

2πRσ(cos θ −1 cos θ2) = ρgπR2H (15.2)
︸ ︷︷ ︸ ︸ ︷︷ ︸

max contact force weight

Force balance requires:

2σ
(cos θ −1 cos θ2) = ρgH (15.3)

R

Thus, an equilibrium is possible only if 2σ (cos θ −r cos θaR ) >
ρgH. Figure 15.4: A heavy liquid column may be

trapped in a capillary tube despite the effects
Note: if θa = θr (no hysteresis), there can be no equilib- of gravity.
rium.
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15.2. Wetting of a Rough Surface Chapter 15. Contact angle hysteresis, Wetting of textured solids 

II. Raindrops on window panes (Dussan+Chow 1985) 

If θ1 = θ2 then the drop will fall due to unbalanced 
gravitational force. θ2 can be as large as θa, θ1 as small 
as θr. Thus, the drop weight may be supported by the 
capillary force associated with the contact angle hystere
sis. 

Note: Fg ∼ ρR3g, Fc ∼ 2πRσ(cos θ1 − cos θ2) which implies 
ρgR2 

that FG ∼	 ≡ Bo. In general, drops on a window pane FC σ 
will increase in size by accretion until Bo > 1 and will then roll 
downwards. 

15.2 Wetting of a Rough Surface 

Consider a fluid placed on a rough surface. Figure 15.5: A raindrop may be pinned 

Define: roughness parameters on a window pane. 

Total Surface Area Area of islands 
r =	 > 1 φS = < 1 (15.4) 

Projected Surf. Area Projected Area 

The change in surface energy associated with the fluid front advancing a distance dz: 

dE = (γSL − γSV ) (r − φS)dz + γ(1− φS)ds	 (15.5) 

Spontaneous Wetting (demi-wicking) arises when dE < 0 
γSV −γSL 1−φSi.e. cos θe = > ≡ cos θc, i.e. when θe < θC . Note:γ r−φS 

1.	 can control θe with chemistry, r and φS with geometry, so can prescribe wettability of a solid. 

π2. if r ≫ 1, θC = 
2 , so one expects spontaneous wicking when θe < π/2 

3. for a flat surface, r ∼ 1, θc = 0: wicking requires cos θe > 1 which never happens. 

4. most solids are rough (except for glass which is smooth down to ∼ 5Å). 

Wetting of Rough Solids with Drops 
Consider a drop placed on a rough solid. Define: Effective contact angle θ∗ is the contact angle apparent
 
on a rough solid, which need not correspond to θe. Observation:
 
θ∗ < θe when θe < π/2 (hydrophilic)
 
θ∗ > θe when θe > π/2 (hydrophobic).
 
The intrinsic hydrophobicity or hydrophilicity of a solid, as prescribed by θe, is enhanced by surface
 
roughening.
 

Figure 15.6: A drop wetting a rough solid has an effective contact angle θ∗ that is generally different 
from its equilibrium value θe. 
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15.3. Wenzel State (1936) Chapter 15. Contact angle hysteresis, Wetting of textured solids 

15.3 Wenzel State (1936) 

A Wenzel state arises when the fluid impregnates the rough solid. The change in wetting energy associated 
with a fluid front advancing a distance dx (see Fig. 15.7) is 

dEW = r(γSL − γSV )dx + γ cos θ∗dx (15.6) 

If r = 1 (smooth surface), Young’s Law emerges.
 
If r > 1: cos θ∗ = r cos θe
 

Note: 

1.	 wetting tendencies are amplified by roughening, 
e.g. for hydrophobic solid (θe > π/2, cos θe < 0 ⇒ θe ≫
 
π/2 for large r )
 

2. for θe < θc (depends on surface texture) ⇒ demi-wicking 
/ complete wetting 

3. Wenzel state breaks down at large r ⇒ air trapped within 
the surface roughness ⇒ Cassie State 

15.4 Cassie-Baxter State 

In a Cassie state, the fluid does not impregnate the rough
 
solid, leaving a trapped vapour layer. A fluid placed on
 
the rough surface thus sits on roughness elements (e.g.
 
pillars or islands), and the change of energy associated
 
with its front advancing a distance dx is
 
dEc = φS (γSL − γSV ) dx + (1 − φS) γdx + γ cos θ∗dx
 

(15.7)
 
For equilibrium (dEc/dx = 0), we require:
 

cos θ∗ = −1 + φS + φS cos θe (15.8) 

Note: 

1.	 as pillar density φS → 0, cos θ∗ 
→ −1, i.e. θ∗ 

→ π 

2. drops in a Cassie State are said to be in a “fakir
 
state”.
 

3.	 contact angle hysteresis is greatly increased in the
 
Wenzel state, decreased in the Cassie.
 

4. the maintenance of a Cassie state is key to water
 
repellency.
 

Crossover between Wenzel and Cassie states: 

−1+φSFor dEW > dEc, we require −r cos θe +cos θ∗ > −φs cos θe +(1−φs)+cos θ∗, i.e. cos θe < r−φS 
= cos θc, 

i.e. one expects a Cassie state to emerge for cos θe > cos θc. Therefore, the criterion for a Wenzel State 
giving way to a Cassie state is identical to that for spontaneous wicking. 

Figure 15.7: The wetting of a rough solid in 
a Wenzel state. 

Figure 15.8: The wetting of a rough solid in 
a Cassie-Baxter state. 
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15.4. Cassie-Baxter State Chapter 15. Contact angle hysteresis, Wetting of textured solids 

Summary: 

Hydrophilic: Wenzel’s Law ceases to apply at small θe when demi-wicking sets in, and the Cassie state 
emerges. 

Hydrophobic: Discontinuous jump in θ∗ as θe exceeds π/2 ⇒ Cassie state. Jump is the largest for large 
roughness (small φS) 
Historical note:
 

1.	 early studies of wetting motivated by insecticides 

2.	 chemists have since been trying to design superhydrophobic (or oliophobic) surfaces using combina
tions of chemistry and texture 

3.	 recent advances in microfabrication have achieved θ∗ 
∼ π, Δθ ∼ 0 (e.g. Lichen surface McCarthy) 
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16. More forced wetting
 
Some clarification notes on Wetting. 

Figure 16.1: Three different wetting states. 

Last class, we discussed the Cassie state only in the context 
of drops in a Fakir state, i.e. suspended partially on a bed of 
air. There is also a “wet Cassie” state. More generally, the 
Cassie-Baxter model applies to wetting on a planar but chemi
cally heterogeneous surfaces. 
Consider a surface with 2 species, one with area fraction f1 and 
equilibrium contact angle θ1, another with area fraction f2 and 
angle θ2. Energy variation associated with the front advancing 
a distance dx: 
dE = f1(γSL − γSV )1dx + f2(γSL − γSV )2dx + γ cos θ∗dx. 
Thus, dE = 0 when 

cos θ∗ = f1 cos θ1+f2 cos θ2 (Cassie-Baxter relation) (16.1) 

Special Case: in the Fakir state, the two phases are the solid 
(θ1 = θe and f1 = θS) and air (θ2 = π, f2 = 1− θS) so we have 

cos θ∗ = θS cos θe − 1 + θS (16.2) 

as previously. As before, in this hydrophobic case, the Wenzel state is energetically favourable when 
dEW <dEC , i.e. cos θC < cos θe < 0 
where cos θC = (θS − 1)/(r − θS), i.e. θE is between π/2 and θC . 
However, experiments indicate that even in this regime, air may remain trapped, so that a metastable 
Cassie state emerges. 

16.1 Hydrophobic Case: θe > π/2, cos θe < 0 

In the Fakir state, the two phases are the solid (θ = θe, f1 = φ) and vapour (θ2 = π, f2 = 1− φs). 
Cassie-Baxter: 

cos θ∗ = πS cos θe − 1 + φs (16.3) 

as deduced previously. As previously, the Wenzel state is energetically favourable when dEW < dEL, i.e. 
φS −1 cos θC < cos θe < 0 where cos θC = r−φS 

. Experiments indicate that even in this region, air may remain 
trapped, leading to a meta-stable Fakir state. 

Figure 16.2: Wetting of a tiled (chem
ically heterogeneous) surface. 
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16.2. Hydrophilic Case: θe < π/2 Chapter 16. More forced wetting 

Figure 16.3: Relationship between cos θ∗ and cos θe for different wetting states. 

16.2 Hydrophilic Case: θe < π/2 

Here, the Cassie state corresponds to a tiled surface with 2 phases corresponding to the solid (θ1 = θe,
 
f1 = φS) and the fluid (θ2 = 0, f2 = 1− φS).
 
Cassie-Baxter ⇒ cos θ∗ = 1 − φS + φS cos θe, which describes a “Wet Cassie” state. Energy variation:
 
dE = (r − φS)(γSL − γSV )dx + (1 − φS)γdx.
 

γSL − γSV 1− φS
⇒ dE = 0 if cos θe = > ≡ cos θ∗ (16.4) cγ r − φS 

For θe < θc, a film will impregnate the rough solid. Criteria for this transition can also be deduced by 
equating energies in the Cassie and Wenzel states, i.e. r cos θe = 1− φS +φS cos θe ⇒ θe = θC . Therefore, 
when π/2 > θe > θC , the solid remains dry ahead of the drop ⇒ Wenzel applies ⇒ when θe < θC ⇒ film 
penetrates texture and system is described by “Wet Cassie” state. 

Johnson + Dettre (1964) examined water drops on wax, whose roughness they varied by baking. They 
showed an increase and then decrease of Δθ = θa − θr as the roughness increased, and system went from 
smooth to Wenzel to Cassie states. 
Water-repellency: important for corrosion-resistance, self-cleaning, drag-reducing surfaces. It requires 
the maintenance of a Cassie State. This means the required impregnation pressure must be exceeded by 
the curvature pressure induced by roughness. 
E.g.1 Static Drop in a Fakir State 

δThe interface will touch down if δ > h. Pressure balance: σ 
∼ σ so δ > h ⇒ l

2 
> h i.e. R < l

2 

R l2 R h . 
Thus taller pillars maintain Fakir State. (see Fig. 16.5) 

E.g.2 Impacting rain drop: impregnation pressure ΔP ∼ ρU2 or ρUc where c is the speed of sound in 
water. 

E.g.3 Submerged surface, e.g. on a side of a boat. ΔP = ρgz is impregnation pressure. 
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16.3. Forced Wetting: the Landau-Levich-Derjaguin Problem Chapter 16. More forced wetting 

Figure 16.4: Contact angle as a function of surface roughness for water drops on wax. 

Figure 16.5: To remain in a Cassie state, the internal drop pressure P0 + 2σ/R must not exceed the 
curvature pressure induced by the roughness, roughly σ/ℓ. 

16.3 Forced Wetting: the Landau-Levich-Derjaguin Problem 

Withdraw a plate from a viscous fluid with constant speed. What is the thickness of the film that coats 
the plate? Consider a static meniscus. 

VFor relatively thick films (Ca ∼ 1), balancing viscous stresses and gravity: µ ∼ ρgh ⇒h 

� �1/2
µV 

1/2h ∼ ∼ ℓcCa (Derjaguin 1943) (16.5) 
ρg 

σ µV viscous where ℓc = and Ca = = is the Capillary number. ρg σ curvature 

But this scaling is not observed at low Ca, where the coating is resisted principally by curvature pressure 
√ 

rather than gravity. Recall static meniscus (Lecture 6): η(x) = 2ℓc (1− sin θ(x)) and internal pressure: 
√ √ 

p(x) = p0 − ρgη(x). As x → 0, η(x) → 2ℓc and p(x) → p0 − 2ρgℓc. It is this capillary suction inside 
the meniscus that resists the rise of thin films. 
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16.3. Forced Wetting: the Landau-Levich-Derjaguin Problem Chapter 16. More forced wetting

Thin film wetting

We describe the flow in terms of two distinct re-
gions:

Region I: Static meniscus. The balance is between
gravity and curvature pressures: ρgη ∼ σ∇ · n so curva-
ture ∇ · n ∼ 1/ℓc.
Region II: Dynamic meniscus (coating zone). The
balance here is between viscous stresses and curvature
pressure. Define this region as the zone over which film
thickness decreases from 2h to h, whose vertical extent L
to be specified by pressure matching. In region II, cur-
vature ∇ · n ∼ h/L2. Matching pressure at point A:
p 2
0 −

σh σh
L2 ∼ p0 − ρgℓc ⇒ L ∼ ℓch L = ℓchρgℓc

√
∼ ⇒

is the geometric mean of ℓc and h.
Figure 16.6: The two regions of the meniscusForce balance in Zone II: viscous stress vs. curvature pres-

V
∼

∆P
∼

h 1 next to a moving wall.sure: µh2 σL L2 .L
3/2

Substitute in for L ⇒ h3
∼

µV L3
∼ Caℓ 2

c h3/2
⇒ h ∼ ℓ /3 σ µV

cCa where ℓc =σ

√

,ρg Ca = .σ

Implicit in above: h ≪ L, L ≪ ℓc, ρg ≪
σh

3 , or equivalentlyL Ca1/3 ≪ 1. Matched asymptotics give

h ≈ 0.94ℓ 2
cCa

/3.

E.g.1 Jump out of pool at 1m/s: Ca ∼ 10−2 so h ∼ 0.1mm ⇒ ∼ 300g entrained.

E.g.2 Drink water from a glass, V ∼ 1cm/s ⇒ Ca ∼ 10−4.

Figure 16.7: Left: A static meniscus. Right: Meniscus next to a wall moving upwards with speed V .
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17. Coating: Dynamic Contact Lines
 
Last time we considered the Landau-Levich-Derjaguin Problem and deduced 
h Ca2/3 for Ca = < 10−3
∼ ℓc σ 

h ∼ ℓcCa1/3 for Ca → 1. 
The influence of surfactants 

Surfactants decrease σ which affects h slightly. But the principle effect is to generate Marangoni stresses 
that increase fluid emplacement: h typically doubles. 

µV 

Figure 17.1: The influence of surfactants on fiber coating. Gradients in Γ induce Marangoni stresses that 
enhance deposition. 

Fiber coating: 
( )

1 1Normal stress: p0 + σ + = p0 − ρgz.R1 R2 

If b ≪ ℓc, 1 
∼ 1 ⇒ curvature pressures dominant, can’t be balanced by gravity. R1 b 

Thus, the interface must take the form of a catenoid: 1 

R1 
+ 1 

R2 
= 0. 

z−h
e )

For wetting, θe = 0 ⇒ r(z) = b cosh where h ≈ b ln(2ℓc/b). b 
Note: 
1. gravity prevents meniscus from extending to ∞ ⇒ h deduced by cutting it off at ℓc. 
2.	 h is just a few times b (h ≪ ℓc) ⇒ lateral extent greatly exceeds its height. 
Forced wetting on fibers e.g. optical fiber coating. 

Figure 17.2: Etching of the microtips of Atomic Force Microscopes. As the fiber is withdrawn from the 
acid bath, the meniscus retreats and a sharp tip forms. 
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Chapter 17. Coating: Dynamic Contact Lines 

Figure 17.3: Left: Forced wetting on a fiber. Right: The coating thickness as a function of the Reyonolds 
number Re. 

σpfilm ∼ p0 + b , pmeniscus ∼ p0 ⇒ Δp ∼ σb resists entrainment. 

U Δp σForce balance: µ e2 ∼ = L bL .√ 
ePressure match: ∼ 1 ⇒ L ∼ be, substitute into the previous equation to find L2 b 

e ≈ bCa 2/3 (Bretherton ′ s Law)	 (17.1) 

Note: 

•	 this scaling is valid when e ≪ b, i.e. Ca2/3 ≪ 1. 
)1/2(

•	 At higher Ca, film is the viscous boundary layer that develops during pulling: δ ∼ µ
ρ 
L
U 
s , where 

Ls is the submerged length. 

Displacement of an interface in a tube 

E.g. air evacuating a water-filled pipette, pumping oil out of rock with water. 

Figure 17.4: Left: Displacing a liquid with a vapour in a tube. Right: The dependence of the film 
thickness left by the intruding front as a function of Ca = µU/σ. 

σIn the limit of h ≪ r, the pressure gradient in the meniscus ∇p ∼ , where l is the extent of the dynamic rl
meniscus. 

2σ σ σh As on a fiber, pressure matching: p0 + − ∼ p0 + ⇒ l ∼ (hr)1/2 when h ≪ r. r r−h l2 

Force balance: µU/h2 
∼ σ/rl ∼ σ/r(hr)1/2 ⇒ 

' -v " '-v" 
viscous curvature 

2/3h ∼ rCa (Bretherton 1961)	 (17.2) 
µU 
σ .where Ca = 

2/3Thick films: what if h = ord(r)? For h ∼ r, Taylor (1961) found h ∼ (r − h)Ca . 
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17.1. Contact Line Dynamics	 Chapter 17. Coating: Dynamic Contact Lines 

17.1 Contact Line Dynamics
 

Figure 17.5: The form of a moving meniscus near a wall or inside a tube for three different speeds. 

We consider the withdrawal of a plate from a fluid bath (Fig. 16.6) or fluid displacement within a 
cylindrical tube. Observations: 

•	 at low speeds, the contact line advances at the dynamic contact angle θd < θe 

•	 dynamic contact angle θd decreases progressively as U increases until U = UM . 

•	 at sufficiently high speed, the contact line cannot keep up with the imposed speed and a film is 
entrained onto the solid. 

Now consider a clean system free of hysteresis.
 
Force of traction pulling liquid towards a dry region:
 
F (θd) = γSV − γSL − γ cos θd.
 
Note:
 

•	 F (θe) = 0 in equilibrium. How does F depend on U?
 
What is θd(U)?
 

•	 the retreating contact line (F < 0) was examined with
 
retraction experiments e.g. plate withdrawal.
 

•	 the advancing contact line (F > 0) was examined by Hoff
mann (1975) for the case of θe = 0.
 

•	 he found θd ∼ U1/3 
∼ Ca1/3 (Tanner’s Law) 

Dussan (1979): drop in vicinity of contact line advances like a 
tractor tread 

Figure 17.6: Dynamic contact angle θd 
as a function of the differential speed U . 
For U > UM , the fluid wets the solid. 
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17.1. Contact Line Dynamics Chapter 17. Coating: Dynamic Contact Lines 

Figure 17.7: The advancing and retreating contact angles of a drop. 

Figure 17.8: A drop advancing over a solid boundary behaves like a tractor tread (Dussan 1979 ), ad
vancing though a rolling motion. 

Flow near advancing contact line 

We now consider the flow near the contact line of a spreading liquid (θd > θe): 
z

• consider θd ≪ 1, so that slope tan θd = ≈ θd ⇒ z ≈ θdx. x
 

dU U

• velocity gradient: ≈

dz θdx 

• rate of viscous dissipation in the corner 
1 1  

dv 
 2 1 

∞ 1 zmax =θd x U2 

Φ = µ dU = µ dx dz (17.3) 
dz θd

2x2 
corner 0 0 

1
∞ 1

∞U2 3µU2 dx 
Φ = 3µ θdxdx = (17.4) 

θd
2x2 θd x0 0 

J
∞ dx 

J L dxde Gennes’ approximation: ≈ = ln L/a ≡ ℓD0 x a x 
where L is the drop size and a is the molecular size. From experiments 15 < ℓD < 20. 

Energetics: 
3µℓD

FU = Φ = · U2 (17.5) 
θd 

rate of work done by surface forces equals the rate of viscous dissipation. 
Recall: 

• F = γSV − γSL − γ cos θd = γ (cos θe − cos θd) 

γ 
e )
θ2 − θ2• in the limit θe < θd ≪ 1, cos θ ≈ 1 − θ

2 
⇒ F ≈

2 2 d e

• substitute F into the energetics equation to get the contact line speed: 
∗ e )

U = 
U

θd θd 
2 
− θ2 (17.6) e6ℓD 

∗ γwhere U = µ ≈ 30m/s. 
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17.1. Contact Line Dynamics Chapter 17. Coating: Dynamic Contact Lines 

Note: 

1. rationalizes Hoffmann’s data (obtained for θe = 0) ⇒ U ∼ θ3 D 

2. U = 0 for θd = θe (static equilibrium) 

3. U = 0 as θd → 0: dissipation in sharp wedge impedes motion. 

dU U
e ) 

θe U4. U(θd) has a maximum when 
∗ ∗ 

= 3θ2 − θ2 ⇒ θd = √ √ θ3⇒ Umax = edθd 6ℓD d e 3 9 3ℓD 

Figure 17.9: Left: Schematic illustration of the flow in the vicinity of an advancing contact line. Right: 
The dependence of the dynamic contact angle on the speed of withdrawal. 

∗ E.g. In water, U = 70m/s. With θe = 0.1 radians and ℓD = 20, Umax = 0.2mm/s 
⇒ sets upper bound on extraction speed for water coating flows. 
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18. Spreading 
Recall: gravity currents, the spreading of heavy fluid under the influence of gravity.
 
further reading: John E. Simpson -Gravity Currents: In the Environment and the Laboratory.
 

Stage I: Re ≫ 1
 
Flow forced by gravity, and resisted by fluid iner
tia:
 

Δρgh ρU2	 √ 
′ 

∼ ⇒ U ∼ g ′h where g = R R 
Δρ g.ρ 

VContinuity: V = πR2(t)h(t) = const. ⇒ h(t) ∼ R2(t)
 
dR
 

⇒ U ≡ ∼
√ 
g ′V 1 ⇒ RdR ∼

√ 
g ′V dt ⇒ R(t) ∼dt R 

′ V )1/4t1/2	 Figure 18.1: Spreading of a fluid volume un(g 
der the influence of gravity. 

√ 
UR Note: U ∼ g ′h decreases until Re = ≤ 1.ν 

Stage II: Re ≪ 1 
∂p = ν ∂2 u Δρgh UFlow forced by gravity, resisted by viscosity: ⇒ ∼ ν∂r ∂z2 R h2 

now substitute for h(t) = V/R2(t) to obtain: 

3	 3dR R ρg′V	
(
ρg′V

)1/8 
1/8U = ∼ ∼ ⇒ R ∼ t	 (18.1) 

dt t νR7	 ν 

18.1 Spreading of small drops on solids 

For a drop of undeformed radius R placed on a solid substrate, spreading will in general be driven by both 
gravity and curvature pressure. 

ρgh	 γh Gravity: ∇pg ∼ , Curvature: ∇pc ∼ R3 .R 
Continuity V = πR2(t)h(t) =const. 

Δpg ρgR2 ρgV 1Which dominates? ∼ = Bond number. Bo = ∼ ⇒ gravity becomes progressively more 
Δpc γ	 γh h 

important as the drop spreads !? 
Recall: 

•	 drop behaviour depends on S = γSV − γSL − γ. 

•	 When S < 0: Partial wetting. Spreading arises until a puddle forms. 

•	 When S > 0: Complete wetting. Here, one expects spreading forced by the unbalanced tension at 
the contact line. 

µU 
· πR2 

∼ S · 2πR	 (18.2) 
h '-v" '-v" '-v" 
'-v" drop area contact line force perimeter 

viscous stress 

U	 
⇒ R3 dR 

∼ SU Thus, we expect R dR 
∼ S ∼ Shdt µ µ R2 dt µ 

)1/4(
SU 

1/4
⇒ R ∼ t	 (18.3) 

µ 
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18.2. Immiscible Drops at an Interface Pujado & Scriven 1972 Chapter 18. Spreading 

∼ t1/10 But this is not observed; instead, one sees R . Why? 

Hardy (1919) observed a precursor film, the evidence of which was the disturbance of dust ahead of the 
drop. This precursor film is otherwise invisible, with thickness e ∼ 20Å 
Its origins lie in the force imbalance at the contact line (S > 0) and its stability results from interactions 
between the fluid and solid (e.g. Van der Waals) 

Physical picture 
Force at Apparent Contact Line: F = γ + γSL − 

θ2 

γ cos θd − γSL = γ(1 − cos θd) ≈ γ d for small 
2 

θd. 

3µℓDNote: F ≪ S. Now recall from last class: FU = U2 .θd 

γθd 
2 

dR θd ULetting F → 
2 
, we find U = = F = 

∗ 

θd
3 , where dt 3ℓD µ 6ℓD 

∗ γU = µ . Since the drop is small, it is a section of a sphere, so 
that 

π 
U = R3θd (18.4) Figure 18.2: The precursor film of a

4 
dθd 

spreading drop. 
3 dR = − 1Hence . Substituting in dR from above, we find: R dt θd dt dt 

∗
1 dθd −U
θd dt = R θ

3 

d.
 
−1/3 1/3 

≡ U1/3 
⇒ dθd
 13/3

Now substitute R = Lθ ≈ (U/θd) and L = − U
∗ 

θ ⇒d dt L d 

( )3/10 
L 

θd = (Tanner ′ s Law) (18.5) 
U∗t

)1/10 (
∗ 

so using (18.4) yields R ∼ L U t , which is consistent with observation. L 

18.2 Immiscible Drops at an Interface Pujado & Scriven 1972 

Gravitationally unstable configurations can arise (ρa < ρb < ρc or ρc < ρa < ρb). 

• weight of drops supported by interfacial tensions. 
 

• if drop size R < lbc ∼
γbc , it can be suspended by the interface. 

(ρb−ρc)g

Sessile Lens, ρa < ρc < ρb: stable for drops of any size, e.g. oil on water. 

Figure 18.3: An immiscible liquid drop floats on a liquid bath. 
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18.3 Oil Spill 

3 Distinct phases: 

J
1/4 

t1/2Phase I Inertia vs. Gravity: U ∼ g ′h(t) ⇒ R(t) ∼ (g ′U0)

(
ρg ′ V 3 

)1/8 

t1/8Phase II Viscosity vs. Gravity : as previously, R ∼ 0 
ν 

Phase III Line tension vs. Viscosity: For S < 0, an equilibrium configuration arises ⇒ drop takes the 
form of a sessile lens. For S > 0 the oil will completely cover the water, spreading to a layer of molecular 
thickness. 

Phase IIIa Viscous resistance from dissipation within oil. As previously: 
)1/4(

µU SU t1/4πR2 
∼ 2πRS ⇒ R ∼h µ 

Phase IIIb Spreading driven by S, resisted by viscous dissipation in the underlying fluid. 
√ 

Blasius boundary layer grows on base of spreading current like δ ∼ νt. 
√ √ ( )1/2 

S ν1/4t3/4νt ⇒ R dR 
∼ S µ U πR2 

∼ S · 2πR where δ ∼ νt1/2 ⇒ R ∼ .δ dt µ µ

18.4 Oil on water: A brief review 

When an oil drop is emplaced on the water surface, its behaviour will depend on the spreading coefficient 

S ≡ σaw − σoa − σow (18.6) 

For S > 0, the droplet will completely wet the underlying liquid, and so spread to a layer of molecular
 
thickness.
 
References: Franklin (1760); Fay (1963); DePietro & Cox (1980); Foda & Cox (1980); Joanny (1987);
 
Brochard-Wyart et al. (1996); Fraaije & Cazabat (1989).
 

For S < 0, an equilibrium configuration arises: the drop assumes the form of a sessile lens.
 
The statics of the sessile lens have been considered by Langmuir (1933) and Pujado & Scriven (1972).
 
their dynamics has been treated by Wilson & Williams (1997) and Miksis & Vanden-Broeck (2001).
 

Figure 18.4: An oil drop spreading on the water surface. 
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18.5 The Beating Heart Stocker & Bush (JFM 2007) 

. 
When a drop of mineral oil containing a small quantity of non-ionic, water-insoluble surfactant (Tergitol) 

Figure 18.5: An oil drop oscillates on the water surface. Note the ring of impurities that marks the edge 
of the internal circulation. 

is so emplaced, a sessile lens with S < 0 is formed. However, no equilibrium shape emerges; the lens 
is characterized by periodic fluctuations in radius, and so resembles a beating heart. 

The phenomenon was first reported by Buetschli (1894), a professor of Zoology at the University of 
Heidelberg, in his treatise Investigations on Protoplasm. It was subsequently described qualitatively by 
Sebba (1979, 1981). 

Motivation: “The ultimate goal of physiologists is to be able to explain living behaviour in terms of 

physicochemical forces. Thus, any expansion of our knowledge of such forces, based on inanimate systems, 

should be examined to see whether this might not offer insight into biological behaviour”. Sebba (1979). 

Many biological systems exhibit periodic behaviour; e.g. oscillations of cells of nerves and muscle 
tissue, oscillations in mitochondria, and biological clocks. Conversion of chemical into mechanical energy 
is one of the main processes in biological movements; e.g. chloroplast movements and muscle contraction. 

Observations: 

• lens behaviour is independent of water depth, strongly dependent on surfactant concentration Γ 

• for Γ = 0 no beating - stable sessile lens 

• for moderate Γ steady beating observed 

• for high Γ drop edges become unstable to fingers 

• for highest Γ, lens explodes into a series of smaller beating lenses. 

• beating marked by slow expansion, rapid retraction 

• odour of Tergitol always accompanies beating 
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•	 placing lid on the chamber suppresses the oscillations ⇒ evaporation is a critical ingredient. 

Physical picture 

Stage I: Slow expansion of drop.
 
Adsorption of surfactant onto oil-water interface ⇒ σow decreases. Evaporation of surfactant from air-

water surface ⇒ σaw increases.
 

Stage II: Rapid retraction.
 
Flushing of surfactant onto air-water interface ⇒ σaw decreases and σow increases. BUT WHY?
 
Internal circulation: confined to the outer extremities
 
of the lens, absent in the flat central region. Marangoni
 
flow associated with gradient in Γ - indicates Γ is low
est at the drop edge. Consistent with radial gradi
ent in adsorption flux along surface. Reflects geomet
ric constraint - less surfactant available to corners than
 
bulk.
 
Such Marangoni shear layers are unstable to longitu
dinal rolls or transverse waves (as in the wine glass).
 
The flushing events are associated with breaking Marangoni waves (Frenkel & Halpern 2005 ).
 

Another surfactant-induced auto-oscillation: The Spitting Drop (Fernandez & Homsy 2004) 

•	 chemical reaction produces surfactant at drop surface 

•	 following release of first drop, periodic spitting 

•	 rationalized in terms of tip-streaming (Taylor 1934), which arises only in the presence of surfactant 
(de Bruijn 1993) for µ/µd ≈ 104 and Ca = µG/σ > 0.4 

Figure 18.6: Internal circulation of the “beat
ing heart”. 
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19. Water waves
 
We consider waves that might arise from disturbing the surface of a pond. 

We define the normal to the surface: n = 
(−ζx ,1) 

(1+ζ2 )1/2 

−ζxx Curvature: ∇ · n = 
(1+ζ2 )3/2 

x

We assume the fluid motion is inviscid and irrota
tional: u = ∇φ. Must deduce solution for velocity 
potential φ satisfying ∇2φ = 0. 
B.C.s: 

∂φ 1. = 0 on z = −h∂z 
2. Kinematic B.C.: 
Dζ = uz ⇒ ∂ζ ∂φ ∂ζ ∂φ on z = ζ. Figure 19.1: Waves on the surface of an inviscid ir+ = Dt ∂t ∂x ∂x ∂z 
3. Dynamic B.C. (time-dependent Bernoulli ap- rotational fluid. 

plied at free surface): 

ρ∂φ 1 2 
+ ρ |∇φ| + ρgζ + pS = f(t), independent of x∂t 2 

where ps = p0 + σ∇ · n = p0 − σ ζxx 

)3/2 is the surface pressure. (1+ζ2 
x

Recall: unsteady inviscid flows Navier-Stokes: 
[ ( ) ]

∂u 1 
2ρ + ρ ∇ u − u × (∇× u) = −∇ (p+Ψ) (19.1) 

∂t 2 
[ ]

ρ∂φ 1 2
For irrotational flows, u = ∇φ, so that u · ∇ ∂t 2

+ ρ |∇φ| + p+Φ = 0. 
21Time-dependent Bernoulli: ρ∂φ + ρ |∇φ| + p+Φ = F (t) only. ∂t 2 

Now consider small amplitude waves and linearize the governing equations and BCs (assume ζ, φ are 
small, so we can neglect the nonlinear terms φ2, ζ2, φζ, etc.) 
⇒ ∇

2φ = 0 in −h ≤ z ≤ 0.
 
Must solve this equation subject to the B.C.s
 

∂φ 1. = 0 on z = −h∂z
 
∂ζ ∂φ
 2. = on z = 0.∂t ∂z 

3. ρ∂φ + ρgζ + p0 − σζxx = f(t) on z = 0.∂t
 

ζêik(x−ct) ˆ ik(x−ct)
Seek solutions: ζ(x, t) = , φ(x, z, t) = φ(z)e
i.e. travelling waves in x-direction with phase speed c and wavelength λ = 2π/k. 

Substitute φ into ∇2φ = 0 to obtain φ̂zz − k2φ̂ = 0 
kzSolutions: φ̂(z) = e , e−kz or sinh(z), cosh(z). 
φTo satisfy B.C. 1: ∂ ˆ

= 0 on z = −h so choose φ̂(z) = A cosh k(z + h). ∂z 
From B.C. 2: 

ikcζ̂ = Ak sinh kh (19.2) 
( ) 

ik(x−ct)From B.C. 3: −ikcρA cosh kh+ ρgζ + k2σζ̂ e = f(t), independent of x, i.e. 

−ikcρA cosh kh+ ρgζ̂ + k2σζ̂ = 0 (19.3) 
( )

icζ 2 g σk (19.2)⇒ A = ⇒ into (19.3) ⇒ c = + tanh kh defines the phase speed c = ω/k.
sinh kh k ρ 

Dispersion Relation: 
( ) 

σk3 

ω2 = gk + tanh kh (19.4) 
ρ 
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Chapter 19. Water waves 

Note: as h → ∞. tanh kh → 1, and we obtain deep water dispersion relation deduced in our wind-over
water lecture. 

Physical Interpretation 

• relative importance of σ and g is prescribed by the Bond number Bo = ρg 
σk2 = σ(2π)

2 

ρgλ2 = (2π)2 ℓ
2 
c 

λ2 

where ℓc = 
J

σ/ρg is the capillary length. 

• for air-water, Bo ∼ 1 for λ ∼ 2πℓc ∼ 1.7cm. 

• Bo ≫ 1, λ ≫ 2πℓc: surface effects negligible ⇒ gravity waves. 

• Bo ≪ 1 : λ ≪ 2πℓc: influence of g is negligible ⇒ capillary waves. 

Special Cases: deep and shallow water. Can expand via Taylor series: For kh ≪ 1, tanh kh = 
( )

kh− 1 (kh)3 + O (kh)5 , and for kh ≫ 1, tanh kh ≈ 1.
3 

A. Gravity waves Bo ≫ 1: c2 = k
g tanh kh.
√ 

Shallow water (kh ≪ 1) ⇒ c = gh. All wavelengths travel at the same speed (i.e. non-dispersive), so 
one can only surf in shallow water. 

J

Deep water (kh ≫ 1) ⇒ c = g/k, so longer waves travel faster, e.g. drop large stone into a pond. 

2 σk B. Capillary Waves: Bo ≪ 1, c = ρ tanh kh. 

√ 
Deep water kh ≫ 1 ⇒ c = σkρ so short waves travel 
fastest, e.g. raindrop in a puddle. 

J 
σhk2 

Shallow water kh ≪ 1 ⇒ c = .ρ 

An interesting note: in lab modeling of shallow water waves ( ) ( ( )) 
2 g σk (kh ≪ 1) c ≈ + kh− 1 k3h3 + O (kh)5 = k ρ 3 

( ) ( )
σh gh + − 1 gh2 k2 + O (kh)4 gh. In ripple tanks, ρ 3 

( )1/2 
3σchoose h = to get a good approximation to ρg

( )1/2 ( )
3σ 3·70 nondispersive waves. In water, ∼ 1/2 ∼ρg 103 Figure 19.2: Deep water capillary waves, 

0.5cm. whose speed increases as wavelength de
creases. 

( )1/4 ( )1/24gσ ρg From c(k) can deduce cmin = .ρ for kmin = σ 

Group velocity: when c = c(λ), a wave is called dispersive 
since its different Fourier components (corresponding to different k or λ) separate or disperse, e.g. deep 

√ 
water gravity waves: c ∼ λ. In a dispersive system, the energy of a wave component does not propagate 
at c = ω/k (phase speed), but at the group velocity: 

dω d 
cg = = (ck) (19.5) 

dk dk

√ √ J
∂ ∂ 1 cDeep gravity waves: ω = ck = gk. cg = ω = gk = g/k = 

2 .∂k ∂k 2 
J1/2 J

σ/ρ ∂ω 3 3Deep capillary wave: c = , ω = σ/ρk3/2 
⇒ cg = = σ/ρk1/2 = c.k ∂k 2 2 
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Chapter 19. Water waves 

Flow past an obstacle.
 
If U < cmin, no steady waves are generated by the obstacle.
 
If U > cmin, there are two k−values, for which c = U :
 

1. the smaller k is a gravity wave with cg = c/2 < c ⇒ energy swept downstream. 

2. the larger k is a capillary wave with cg = 3c/2 > c, so the energy is swept upstream. 

Figure 19.3: Phase speed c of surface waves as a function of their wavelength λ. 

MIT OCW: 18.357 Interfacial Phenomena 80 Prof. John W. M. Bush 



MIT OpenCourseWare
http://ocw.mit.edu

���357 Interfacial Phenomena
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



