
       

 

 

 

          
          

          
            

              
            

 

             
      

          
   

 

  

           

            
         

 

             

 

            

          

Parallel Fast Fourier Transform implementations in Julia
�

12/15/2011 

Abstract 

This paper examines the parallel computation models of Julia through several different 
multiprocessor FFT implementations of 1D input. Minimizing communication overhead with the 
use of distributed arrays is at the heart of this study, with computational optimization details 
left aside as a less important factor. Throughout the discussion, input problem size and the 
number of processors are both assumed to be powers of 2 for the sake of simplicity. Various 
methods of transmitting data within Julia to reduce latency cost are considered. 

Preliminaries 

Before diving into the discussion of implementation details, a high-level introduction to FFT and 
parallel FFT methods is deemed necessary: 

A Discrete Fourier Transform, or DFT, of a sequence X = [X , Xl, . , Xn-lVV is a sequence 
Y = [Y , Yl, . , Yn-lVV given by: 

n n
2-l 2-l n-l
 

mk mk m mk
 Ym =   Xkwn         Ym =   X2kwn   wn   X2k+lwn , m = 0,1,. , n - 1 
2 2k  k  k  

e-2ni/n where wn = 
n

This is immediately recognized as a combination of two smaller problems of size 2, with the 

former containing even-indexed elements of the original array and the latter containing odd-
indexed elements. Defining Yk =  X2k and Zk = X2k+l yields the following two sub-problems:

n
2-l 

n
2-l 

mk mk  m =  Ykwn    n    Zm =   Zkwn , m = 0,1,. , "
n - 1 

2 2k  k  

Once these problems are solved, the solution to the original problem can be determined by: 

Xm =  m   wnmZm, m = 0,1,. n - 1 

n/2 + n
However, since wn

m = -wnm and wn/2 2 
terms can be reduced to (with some n/2 = 1, the last 

n
factoring details that shall be omitted): Xm+n/2 =  m - wnmZm,         m = 0,1, . , 2 

- 1 
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These reduced computations are depicted below by the famous Cooley-Tukey butterfly:
�

Figure 1 - Cooley-Tukey Butterfly 

Note that the ordering of output elements is in a bit-reversed order, (i.e. input element at index 
011 will correspond to output element at index 110 of the resulting array). Due to the recursive 
nature of the solution, the following pseudo code that outlines the main stages of computations 
follows trivially (with optional bit-reversal step depending on the desired output type): 

FFT( array ) 
… base case handling … 
FFT( even set of array ) 
FFT( odd set of array ) 
Combine results using Cooley-Tukey butterfly 

End 

It’s evident that in computing FFT, data elements are exchanged very frequently in order to 
compute the butterfly relation. Because of this, parallel computing models (except for shared 
memory systems) must take care of handling communication across multiple processors 
carefully since latency and bandwidth cost are often the bottlenecks. In the development of 
parallel FFT algorithms, perhaps the two most dominant ones are the Binary Exchange algorithm 
and the Parallel Transpose algorithm. The major difference between these two methods is the 
approach to handling communication between different nodes. In Binary Exchange, data is 
distributed evenly among p processors and only the first log p stages of the computation require 
data exchange, with the remaining stages doing local computations. 

Figure 2 depicts an input of size 8 being 
distributed among 4 processors; with 
the first 2 stages require 
communication, whereas the last two 
can be done locally since the data 
needed are already available on-site. 
This algorithm is best on hypercube 
network (1) since the data required will 
always be found in adjacent nodes, thus 
minimizing the cost of messaging. Figure 2 - Binary Exchange Example (courtesy of (3)) 
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The Parallel Transpose Algorithm is another attempt at solving the internode communication 

problem. An input of size n is conceptually represented as a �n x �n matrix wherein only one 
phase of communication is needed in between computations. The following figure depicts how 
this actually works: 

Figure 3 - Parallel Transpose Algorithm (courtesy of (2)) 

Here we have an array of size 16 being distributed across 4 processors, with the appropriate 
elements living on the bottom-labeled processors. In the first two stages, all butterflies are done 
locally; afterwards data are exchanged altogether in one phase to end up at the second 
configuration that allows for local calculations until the end results. In contrast to Binary 
Exchange where communication is invoked as an on-demand request between corresponding 
nodes, latency cost is only incurred once here. This could help reduce significant overhead in 
systems where communication initialization costs are expensive. 

Binary Exchange and Parallel Transpose are simply different ways to tackle the communication 
cost. However, it is important to note that with different systems and programming languages, 
variations of them could be tailored specifically for the underlying architecture to improve 
performance. For what follows, a study of methods for performing data exchange using Julia on 
clusters is presented. 
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Julia Implementations 

Perhaps the best way to represent input FFT data in Julia is with distributed arrays, or DArray 
objects. These are simply arrays with elements living on a subset of available processors. Instead 
of manually having to set up data, DArray has a nice built-in support for all array operations 
which also abstracts away the underlying work for cross-node communication. 

With this in mind, a very straightforward yet naive way to parallelize FFT is to utilize the 
@spawn macro in Julia and modify the recursive sequential version as below: 

FFT( array::DArray ) 
… base case handling … 
@spawn FFT( even set of array ) 
@spawn FFT( odd set of array ) 
Combine results using Cooley-Tukey butterfly 

End 

This code will work, and in fact is the same approach that FFTW takes when implementing on 
shared memory systems using CILK; however, its performance is far from practical for this case. 
In distributed-memory clusters, the random spawning of FFT calls on processors cause way too 
much communication overhead since they may be assigned to calculations involving data that 
are non-local. This coupled with the fact that single DArray element access is slow, completely 
kills execution time. One can improve this spawning process by leveraging the @spawnat macro 
to specify which processor should handle the problem: 

FFT( array::DArray ) 
… base case handling … 
@spawnat owner(even array[1]) FFT( even set of array ) 
@spawnat owner(odd array[1]) FFT( odd set of array ) 
Combine results using Cooley-Tukey butterfly 

End 

In the above pseudo code, tasks are assigned to processors which contain the first element of 
the problem array in question. With this approach, the communication time is certainly reduced, 
however if the array at hand is distributed on multiple processors; unnecessary non-local 
accesses still happen quite frequently. Yet, if the array distribution is carefully taken care of, 
data could be guaranteed to be local for as many stages of recursion as possible and latency cost 
is reduced. In fact, when the input array is evenly distributed among p processors in a bit-
reversed order, this algorithm follows exactly the Binary Exchange model. In figure 4 (with 
processors 1-4 owning data that are separated by horizontal dashed lines, from top to bottom), 
the first two stages of recursion correspond to the green-boxed area in which all butterfly 
computations are done locally within the assigned processors. Only in the last two stages 
(orange and red, respectively) does it require non-local communication. As discussed 
previously, in general only the last log p stages incur overhead, and this algorithm is a significant 
improvement over the previous one. In practice, however, for large input, the performance is 
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still intolerable partially due to the high cost of DArray element access at the last few stages. 
Furthermore, recursive spawning in Julia is also very expensive and appears to have a non-linear 
cost growth with respect to problem size. Therefore, modifications are necessary in order to 
improve messaging time associated with these two issues. 

Figure 4 - Binary Exchange Implementation (courtesy of (2)) 

To eliminate the spawning overhead, one could treat all sub-problems in the first local stages as 
separate and perform a black box FFT computation on each one. For example, in figure 4, four 
groups of data are each solved independently and locally. Results are then combined 
appropriately in the last two levels. This approach resolves to the following simple pseudo code: 

FFT_BlackBox( array ) 
…Sequentially solve… 

end 
FFT( array::DArray ) 

… base case handling … 
for each processor p 

@spawnat p FFT_BlackBox(array) 
end 
Combine results using Cooley-Tukey butterfly 

End 

Note that these black-box FFT solvers must produce unordered output, which means that the 
bit-reversal step must not be done when solving. The reason is to ensure a correct order of data 
for later stages to process. In this algorithm, any FFT solver would suffice for computing the local 
sub-problem given that it meets the condition stated before. Aside from reducing the number of 
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spawning, this also allows for the opportunity to leverage sequential black box solvers that are 
already optimized, like FFTW. For the purpose of this paper, a simple sequential FFT solver was 
written to serve as a means to illustrate the concept. In practice FFTW can be configured to 
handle these types of input and output. 

Another remaining issue is the cost of accessing DArray elements at the last log p stages of the 
computation. One way to avoid this is to rearrange the data distribution to gather what is 
needed on a processor that is assigned to compute. In figure 4, at the orange level, data can be 
redistributed altogether in a bundle so that array elements that live on processor 2 are moved 
to processor 1, and from processor 4 to 3. The decision on which processor involved in the 
calculation to move data to is random here, but in practice perhaps physical node locations 
should be taken into account. With this approach, after the rearrangement, all data access will 
be local for the current stage, thus avoiding multiple distant element accesses. However, a 
disadvantage to this model lies in the fact that data must ultimately be gathered in one single 
node which might not have sufficient memory. For the purpose of this study, this consideration 
is left aside to focus on optimizing internode communication in the network. 

With Julia, the data redistribution can be done by constructing a new DArray with elements 
living on the appropriate processors. Calculations are then resumed on this new array. However, 
even though the overhead is now significantly reduced compared to previous attempts, it still 
consumes a considerable amount of time, as the timing table below shows (with time measured 
in seconds): 

Problem Size FFTW Communication – 4 procs Communication – 8 procs 
"l 0.0002 0.08972 0.145179 
"l� 0.0009 2.703539 0.191254 
"2 0.128 0.783675 1.014697 
"2� 6.3023 21.3901 26.08323 

The raw communication cost alone far exceeds actual execution time of sequential FFTW on 
various sizes. This is largely due to the expensive cost of rearranging data from one node to 
another. For an input of size "2� distributed among 4 processors, the unit cost of rearranging 
data from one processor to another is around 3 seconds. With this approach, there are a total of 

log p phases of redistribution each involves an exchange of total of 
n
2 

elements, hence the 

bottleneck of execution time. 

Given all of these above-described characteristics of the system, perhaps the best 
implementation of parallel FFT in Julia would use the Transpose algorithm to impose only one 
phase of data redistribution and minimize as much latency cost as possible. Due to time 
constraint, this examination does not include this implementation, however, should still serve as 
a means to understand different advantages and disadvantages of the underlying architecture. 

In the next section, some explanations on the written Julia code and instructions on how to run 
them will be presented. 
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Code execution 

In the code package, several FFT functions are implemented along with helpers. Below is a 
complete set of available APIs and their descriptions: 

Main entry points: 

-	 fftp(array) 
o	 Takes a local array and performs parallel FFT computation using the final algorithm 

presented above. 
- fftp_oc(array) 

o	 Same as fftp() except this version only emulates communication that is done. This 
function is useful to get an accurate measurement of internode messaging 
overhead. 

FFT functions: 

-	 fftp_dit_darray_fftw(array::DArray) 
o Takes a distributed array and computes FFT. This is called by fftp(). 

- fftp_combine(array::DArray) 
o	 Takes a distributed array and combine the local array elements using the butterfly 

rule. 
- fft(array::DArray) 

o Performs in-place FFT computation on the local portion of the given distributed 
array 

- fftp_dit_darray_fftw_oc(array::DArray) 
o Same as fftp_dit_darray_fftw() except only performs communication calls. 

- fftp_combine_oc(array::DArray) 
o Same as above. 

- fft_oc(array::DArray) 
o Same as above. 

- fftp_dit_darray_smart_spawn(array::DArray, startIdx, endIdx) 
o FFT computation using @spawnat that was described earlier in the paper. 

- fftp_dit_darray_random_spawn(array::DArray, startIdx, endIdx) 
o	 FFT computation using random spawning that was first introduced as a naïve 

implementation. 
- fft_dit_in_place(array, top::Int64, bot::Int64) 

o Performs in-place FFT computation on the given array, giving unordered output. 

Helpers: 

-	 howdist(s::DArray) 
o Prints out the distribution of the given distributed array on available processors. 

- redist(s::DArray, pid1, pid2) 
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o 	 Redistributes  the  distributed  array,  moving  all  data  from  processors  (pid  +  1)  to  pid2  
to  processor  pid1.   

-  redistbb(s,  L)  
o 	 Redistributes  data  all  at  once  assuming  size  of  the  array  and  number  of  processors  

are  both  powers  of  2.  Depending  on  the  specified  level  L,  which  corresponds  to  the  
different  stages  depicted  in  figure  4;  data  are  rearranged  to  ensure  the  
computations  can  be  done  locally.  This  method  must  be  called  successively  on  
results  for  previous  level  until  the  desired  level  is  reached. Re fer  to  below  for  
instruction  for  how  to  execute.  

- 	 bitr_lookup(i,  n)  
o  Bit-reverse  an  n-bit  number  i  using  lookup  table  

-  bitr_loop(i,  n)  
o  Bit-reverse  an  n-bit  number  i  using  standard  loop  and  bit  shifts  

-  bitr(array)  
o 	 Bit-reverse  an  array.  

The  following  lines  of  code  show  how  some  of  these  functions  are  called:
� 

a  =  complex(rand(2^20)) 
�
result  =  fftp(a)  #  Computes  parallel  FFT  on  A 
�
 
m  =  drand(2^20) 
�
d  =  redist(m,1,3)  #  All  array  elements  from  processors  2  and  3  are  moved  to  processor  1
� 
 
m1  =  drand(2^20) 
�
m2  =  redistbb(m1,1)  #  Move  all  data  at  once,  if  on  4  processors,  elements  on  2  are  moved  to  1,
� 
and  from  4  to  3. 
� 
m3  =  redistbb(m2,2)  #  Now  m2  is  distributed  between  processor  1  and  3,  m3  will  contains
� 
results  all  local  to  processor  1. 
�
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