Parallel FFT in Julia

Review of FFT

• Discrete Fourier Transform, or DFT, of sequence $x = [x_0, \ldots, x_{n-1}]^T$ is sequence $y = [y_0, \ldots, y_{n-1}]^T$ given by

$$y_m = \sum_{k=0}^{n-1} x_k \,\omega_n^{mk}, \quad m = 0, 1, \dots, n-1$$

or

$$y = F_n x$$

where entries of Fourier matrix F_n are given by

$$\{F_n\}_{mk} = \omega_n^{mk}$$

18.337

Sequential FFT Pseudocode

Recursive-FFT (array)

- arrayEven = even indexed elements of array
- arrayOdd = odd indexed elements of array
- Recursive-FFT (arrayEven)
- Recursive-FFT (arrayOdd)
- Combine results using Cooley-Tukey butterfly
- Bit reversal, could be done either before, after or in between

Parallel FFT Algorithms

- Binary Exchange Algorithm
- Transpose Algorithm

Binary Exchange Algorithm

 To obtain smaller number of coarse-grain tasks, agglomerate sets of n/p components of input and output vectors x and y, where we assume p is also power of two

Binary Exchange Algorithm

• Thus, exchanges are required in binary exchange algorithm only for first $\log p$ stages, since data are local for remaining $\log(n/p)$ stages

Binary Exchange Algorithm

18.337

Parallel Transpose Algorithm

- Input represented as a $\sqrt{n} \ge \sqrt{n}$ matrix
- Local computation of sub-problems
- Transpose input
- Local computation of remaining problems

Parallel Transpose Algorithm

Julia implementations

- Input is represented as distributed arrays.
- Assumptions: N, P are powers of 2 for sake of simplicity
- More focus on minimizing communication overhead versus computational optimizations

Easy

Recursive-FFT (array)

-
- **@spawn** Recursive-FFT (arrayEven)
- **@spawn** Recursive-FFT (arrayOdd)

-

Same as FFTW parallel implementation for 1D input using Cilk.

Not so fast

Too much unnecessary overhead because of random spawning.

Better:

```
Recursive-FFT (array)
```

-
- @spawnat owner Recursive-FFT (arrayEven)
- <u>@spawnat owner</u> Recursive-FFT (arrayOdd)

FFT_Parallel (array)

- Bit reverse input array and distribute
- **@spawnat owner** Recursive-FFT (first half)
- **@spawnat owner** Recursive-FFT (last half)
- Combine results

Problem:

- Single element DArray access is slow.
- The last log p stages incur too many duplicate array accesses

Solution:

- Redistribute the array so that at the first non-local stage, data will be moved all at once
- Final heavy load on last processor, but still cheaper than latency cost, especially with N large.

Alternate approach – Black box

- Initially similar to parallel transpose method: data is distributed so that each sub-problem is locally contained within one node

FFT_Parallel (array)

- Bit reverse input array and distribute equally
- for each processor
 - @spawnat proc FFT-Sequential (local array)
- Redistribute data and combine locally

Alternate approach

Alternate approach – Black box

Pros:

- Eliminates needs for redundant spawning which is expensive
- Can leverage black box packages such as FFTW for local sequential run, or black box combiners
 - Warning: Order of input to sub-problems is important

Note:

- Have not tried FFTW due to configuration issues

Benchmark Caveats

- Up to input size of 2^{25} , bigger data causes random memory error, broken pipe \Rightarrow unstable results.
- Binary Exchange implementation does not have the redistribution phase
- Black Box implementation uses in-house FFT solver instead of FFTW
- Communication cost still the bottleneck
- 4 processors

Benchmark Results

	FFTW	Binary Exchange	Black Box	Communication	Black Box 8p	Communication 8p
2 ¹⁰	0.0002	11.938756	0.10948204	0.150836	0.37363982	0.4737592
2 ¹⁴	0.0009	193.102961	0.18138098	0.1402709	0.59792995	0.416522
2 ²⁰	0.128	A year?	8.28874588	1.1951251	9.86574506	1.701771
2 ²⁵	6.3023	Apocalypse	290.634222	30.29218	314.73069	44.75283

Benchmark Results

Communication issues

Issue:

- Redistribution done separately at each stage of the last $\log p$ stages, total $\sum_{k=1}^{\log p} 2^{k-1}$ calls
- Could save overhead by eliminating these calls

Attempted solution:

- Bundle into one redistribution phase \Rightarrow total $\log p$ calls

New Results

	FFTW	Black Box Improved Redistribution	Communication for Improved Redistribution	Black Box Improved Redistribution 8p	Communication for Improved Redistribution 8p
2 ¹⁰	0.0002	0.10238204	0.08972	0.154734	0.145179
2 ¹⁴	0.0009	0.247728	2.703539	0.284916	0.191254
2 ²⁰	0.128	8.389301	0.783675	8.717208	1.014697
2 ²⁵	6.3023	287.0166	21.3901	287.4002	26.08323

New Results

More issues and considerations

- Communication cost: where and how. Better redistribution method.
- Leverage of sequential FFTW on black box problems
- A separate algorithm, better data distribution?

Questions

18.337J / 6.338J Parallel Computing Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.