Level Set Method

$\left\{\begin{array}{ll}2 D: & \text { Moving Curve } \\ 3 D: & \text { Moving Surface }\end{array}\right\} \quad$ Orientable, with inside and outside region
Ex.: - Interface between water and oil (surface tension)

- Propagating front of bush fire
- Deformable elastic solid

Movement of surface under velocity field \vec{v}.
Tangential motion does not change surface.
Only velocity component normal to surface is important.

Effective velocity field: $\vec{v}=F \hat{n}$
Ex.:

Image by MIT OpenCourseWare.

Explicit Tracking
I. Lagrangian Markers:

- Place markers on surface: $\stackrel{\circ}{\vec{x}}_{1}, \ldots, \stackrel{\stackrel{\stackrel{\rightharpoonup}{x}}{n}}{ } \in \mathbb{R}^{d}$
- Move markers by ODE: $\left\{\begin{array}{l}\stackrel{\circ}{x}_{k}=\vec{v}\left(\vec{x}_{k}, t\right) \\ \vec{x}_{k}(0)=\stackrel{\rightharpoonup}{x}_{k}\end{array}\right.$
\oplus Fast, easy to move
\oplus Accurate (high order ODE solvers)
\ominus Uneven marker distribution

Image by MIT OpenCourseWare.

\ominus Incorrect entropy solutionTopology changes
Image by MIT OpenCourseWare.
 Image by MIT OpenCourseWare

\ominus Numerical instabilities with curvature

Image by MIT OpenCourseWare.

\ominus Marker connections in 3D?

II. Volume of Fluid:

- Regular grid
- Store volume/area "inside" surface
- Update volume value according to \vec{v}
\oplus Very robust
\oplus Simple in 3D
\ominus Not very accurate
\ominus Exact surface shape and topology?
\ominus Curvature reconstruction?

0	.3	.1	0
0	.6	.9	.3
0	.1	.9	.7
0	0	.4	.3

Image by MIT OpenCourseWare.
Implicit Representation

- Define function $\phi(\vec{x})$, s.t.

$$
\left\{\begin{array}{ll}
\phi>0 & \text { outside } \\
\phi=0 & \text { interface } \\
\phi<0 & \text { inside }
\end{array}\right\}
$$

- Store ϕ on regular Eulerian grid
- PDE IVP for ϕ, yielding correct movement
- Recover \hat{n}, K from ϕ

$$
\begin{aligned}
& \hat{n}=\frac{\nabla \phi}{|\nabla \phi|} \\
& \kappa=\nabla \cdot\left(\frac{\nabla \phi}{|\nabla \phi|}\right)=\frac{\phi_{x x} \phi_{y}{ }^{2}-2 \phi_{x} \phi_{y} \phi_{x y}+\phi_{y y} \phi_{x}{ }^{2}}{\left(\phi_{x}{ }^{2}+{\phi_{y}}^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

Approximate $\phi_{x}, \phi_{y}, \phi_{x x}, \phi_{x y}, \phi_{y y}$ by finite differences (e.g. central).

Signed Distance Function:
$\begin{cases}\phi=0 & \text { surface } \\ |\nabla \phi|=1 & \text { almost everywhere } \\ \phi<0 & \text { inside }\end{cases}$
\oplus Surface reconstruction very robust
$\oplus\left\{\begin{array}{l}\hat{n}=\nabla \phi \\ K=\nabla^{2} \phi\end{array}\right.$

PDE

Image by MIT OpenCourseWare.

Movement under given velocity field \vec{v} : describes unit circle $\phi_{t}+\vec{v} \cdot \nabla \phi=0 \quad$ Linear advection
Special case: normal velocity $\vec{v}=F \hat{n}=F \frac{\nabla \phi}{|\nabla \phi|}$
$\Rightarrow \phi_{t}+F|\nabla \phi|=0 \quad$ Level set equation

Numerical Methods

- Upwind
- WENO
- (Spectral)

Ex.: Upwind for level set equation (first order)

$$
\begin{aligned}
& \frac{\phi_{i, j}^{n+1}-\phi_{i, j}^{n}}{\Delta t}=\max (F, 0) \nabla_{i j}^{+}+\min (F, 0) \nabla_{i j}^{-} \\
& \nabla_{i j}^{+}=\left(\max \left(D^{-x} \phi, 0\right)^{2}+\min \left(D^{+x} \phi, 0\right)^{2}+\max \left(D^{-y} \phi, 0\right)^{2}+\min \left(D^{+y} \phi, 0\right)^{2}\right)^{\frac{1}{2}} \\
& \nabla_{i j}^{-}=(\underbrace{\operatorname{Din}^{-x} \phi}_{\text {all evaluated at } \phi_{i, j}^{n}}, 0)^{2}+\max \left(D^{+x} \phi, 0\right)^{2}+\min \left(D^{-y} \phi, 0\right)^{2}+\max \left(D^{+y} \phi, 0\right)^{2})^{\frac{1}{2}}
\end{aligned}
$$

Higher order: WENO and SSP-RK.

Reinitialization

Desirable $|\nabla \phi|=1$.
But in general $\phi_{t}+F|\nabla \phi|=0$ does not preserve $|\nabla \phi|=1$.
Fixes:

- Solve IVP
$\phi_{\tau}+\operatorname{sign}(\phi)(|\nabla \phi|-1)=0$
In each time step, for $0 \leq \tau \leq$?
- Solve Eikonal equation

Given ϕ, find $\hat{\phi}$, s.t.
$\left\{\begin{array}{l}|\nabla \hat{\phi}|=1 \\ \{\hat{\phi}=0\}=\{\phi=0\}\end{array}\right\}$
Use fast marching method by Sethian.

- Extension velocity:

Change velocity field \vec{v} to $\hat{\vec{v}}$, s.t.

$$
\left\{\begin{array}{l}
\hat{\vec{v}}=\vec{v} \text { at }\{\phi=0\} \\
\nabla \hat{\vec{v}}=0 \rightarrow|\nabla \phi|=1 \text { preserved }
\end{array}\right.
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.336 Numerical Methods for Partial Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

