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18.336 spring 2009 lecture 2 02/05/09 

Well-Posedness 

Def.: A PDE is called well-posed (in the sense of Hadamard), if 

(1) a solution exists 
(2) the solution is unique 
(3) the solution depends continuously on the data


(initial conditions, boundary conditions, right hand side)


Careful: Existence and uniqueness involves boundary conditions 

Ex.: uxx + u = 0 

a) u(0) = 0, u(π 
2 ) = 1 unique solution u(x) = sin(x)⇒

b) u(0) = 0, u(π) = 1 no solution ⇒
c) u(0) = 0, u(π) = 0 infinitely many solutions: u(x) = A sin(x)⇒ 

Continuous dependence depends on considered metric/norm.

We typically consider || · ||L∞ , || · ||L2 , || · ||L1 .


Ex.: ⎧⎨

⎫⎬
ut = uxx heat equation 

u(0, t) = u(1, t) = 0 boundary conditions well-posed
⎩
 ⎭

u(x, 0) = u0(x) initial conditions 

ut = −uxx backwards heat equation 
⎧⎨


⎫⎬

no continuous dependence


u(0, t) = u(1, t)

u(x, 0) = u0(x) initial conditions


boundary conditions
⎩
 ⎭
 on initial data [later]


Notions of Solutions 

Classical solution 

kth order PDE ⇒ u ∈ Ck 

Ex.: �2 u ∈ C∞u = 0 ⇒ 

ut + ux = 0 
u(x, t) ∈ C1 

u(x, 0) ∈ C1 ⇒ 

Weak solution 
kth order PDE, but u /∈ Ck . 
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Ex.: Discontinuous coefficients
⎧⎪⎪⎪⎪⎨

(b(x)ux)x = 0 
u(0) = 0


⎫⎪⎪⎪⎪⎬ 4 1 x x <
3 2 ⎪⎪⎪⎪⎩


u(1) = 1 

b(x) = 

u(x) =
⎪⎪⎪⎪⎭


⇒
 2 1 1 x +
 x ≥
1 3 3 21 x <

2 

2 x ≥ 
2
1 

Ex.: Conservation laws 

ut + (1
2 u

2)x = 0 Burgers’ equation 

Fourier Methods for Linear IVP 

IVP = initial value problem 

ut = ux advection equation 
ut = uxx heat equation

ut = uxxx Airy’s equation

ut = uxxxx


w=+∞ 

e iwx û(w, t)dwa) on whole real axis: u(x, t) =
 Fourier transform

w=−∞ 

+�∞

+∞

b) periodic case x ∈ [−π, π[: u(x, t) = ûk(t)e ikx Fourier series (FS) 
k=−∞

Here case b). 
∂u ∂nu 

PDE: (x, t) − 
∂xn 

(x, t) = 0

∂t


dûk 
(t) − (ik)n ûk(t) e ikx = 0 

dt 
insert FS:


k=−∞ 

Since (eikx)k∈Z linearly independent: 
dûk 

= (ik)n ûk(t) ODE for each Fourier coefficient 
dt 
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Solution: ûk(t) = e(ik)nt ûk(0) � π u0(x)e−ikxdxFourier coefficient of initial conditions: ûk(0)= 
2
1 
π −π 

+∞

u(x, t) = ûk(0)e ikx e(ik)nt ⇒ 
k=−∞ 

n = 1: u(x, t) = ûk(0)e ik(x+t) all waves travel to left with velocity 1 
k 

n = 2: u(x, t) = ûk(0)e ikx e−k2t frequency k decays with e−k2t


k


n = 3: u(x, t) = ûk(0)e ik(x−k2t) frequency k travels to right

k with velocity k2 dispersion
� → 

n = 4: u(x, t) = ûk(0)e ikx e k
4t all frequencies are amplified


k unstable
→ 

Message: 

For linear PDE IVP, study behavior of waves eikx .

The ansatz u(x, t) = e−iwteikx yields a dispersion relation of w to k.


The wave eikx is transformed by the growth factor e−iw(k)t . 

Ex.: 

wave equation: utt = c2uxx w = ±ck conservative |e±ickt| = 1 
heat equation: ut = duxx w = −idk2 dissipative e−dk2t 0 
conv.-diffusion: ut = cux +duxx w = −ck−idk2 dissipative 

|
eickte−

|
dk

→
2t 0|

ik2t

| → 
Schrödinger: iut = uxx w = −k2 dispersive |e

e−ik3

|
t

= 1 
Airy equation: ut = uxxx w = k3 dispersive | | = 1 
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