## Well-Posedness

Def.: A PDE is called well-posed (in the sense of Hadamard), if
(1) a solution exists
(2) the solution is unique
(3) the solution depends continuously on the data
(initial conditions, boundary conditions, right hand side)
Careful: Existence and uniqueness involves boundary conditions
Ex.: $u_{x x}+u=0$
a) $u(0)=0, u\left(\frac{\pi}{2}\right)=1 \Rightarrow$ unique solution $u(x)=\sin (x)$
b) $u(0)=0, u(\pi)=1 \Rightarrow$ no solution
c) $u(0)=0, u(\pi)=0 \Rightarrow$ infinitely many solutions: $u(x)=A \sin (x)$

Continuous dependence depends on considered metric/norm.
We typically consider $\|\cdot\|_{L^{\infty}},\|\cdot\|_{L^{2}},\|\cdot\|_{L^{1}}$.
Ex.:
$\left\{\begin{array}{ll}u_{t}=u_{x x} & \text { heat equation } \\ u(0, t)=u(1, t)=0 & \text { boundary conditions } \\ u(x, 0)=u_{0}(x) & \text { initial conditions }\end{array}\right\}$ well-posed
$\left\{\begin{array}{ll}u_{t}=-u_{x x} & \text { backwards heat equation } \\ u(0, t)=u(1, t) & \text { boundary conditions } \\ u(x, 0)=u_{0}(x) & \text { initial conditions }\end{array}\right\} \begin{aligned} & \text { no continuous dependence } \\ & \text { on initial data [later] }\end{aligned}$

## Notions of Solutions

Classical solution
$k^{t h}$ order PDE $\Rightarrow u \in C^{k}$
Ex.: $\nabla^{2} u=0 \Rightarrow u \in C^{\infty}$
$\left\{\begin{array}{l}u_{t}+u_{x}=0 \\ u(x, 0) \in C^{1}\end{array}\right\} \Rightarrow u(x, t) \in C^{1}$
Weak solution
$k^{t h}$ order PDE, but $u \notin C^{k}$.

Ex.: Discontinuous coefficients

$$
\left\{\begin{array}{l}
\left(b(x) u_{x}\right)_{x}=0 \\
u(0)=0 \\
u(1)=1 \\
b(x)=\left\{\begin{array}{ll}
1 & x<\frac{1}{2} \\
2 & x \geq \frac{1}{2}
\end{array}\right\}
\end{array}\right\} \Rightarrow u(x)= \begin{cases}\frac{4}{3} x & x<\frac{1}{2} \\
\frac{2}{3} x+\frac{1}{3} & x \geq \frac{1}{2}\end{cases}
$$

Ex.: Conservation laws
$u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0 \quad$ Burgers' equation


Image by MIT OpenCourseWare.

## Fourier Methods for Linear IVP

IVP $=$ initial value problem
$u_{t}=u_{x} \quad$ advection equation
$u_{t}=u_{x x} \quad$ heat equation
$u_{t}=u_{x x x} \quad$ Airy's equation
$u_{t}=u_{x x x x}$
a) on whole real axis: $u(x, t)=\int_{w=-\infty}^{w=+\infty} e^{i w x} \hat{u}(w, t) d w \quad$ Fourier transform
b) periodic case $x \in\left[-\pi, \pi\left[: u(x, t)=\sum_{k=-\infty}^{+\infty} \hat{u}_{k}(t) e^{i k x} \quad\right.\right.$ Fourier series (FS)

Here case b).
PDE: $\frac{\partial u}{\partial t}(x, t)-\frac{\partial^{n} u}{\partial x^{n}}(x, t)=0$
insert FS: $\sum_{k=-\infty}^{+\infty}\left(\frac{d \hat{u}_{k}}{d t}(t)-(i k)^{n} \hat{u}_{k}(t)\right) e^{i k x}=0$
Since $\left(e^{i k x}\right)_{k \in \mathbb{Z}}$ linearly independent:
$\frac{d \hat{u}_{k}}{d t}=(i k)^{n} \hat{u}_{k}(t)$ ODE for each Fourier coefficient

$$
\begin{aligned}
& \text { Solution: } \quad \hat{u}_{k}(t)=e^{(i k)^{n} t} \underbrace{\hat{u}_{k}(0)} \\
& \\
& \Rightarrow u(x, t)=\sum_{k=-\infty}^{+\infty} \hat{u}_{k}(0) e^{i k x} e^{(i k)^{n} t} \\
&
\end{aligned}
$$

$$
n=1: \quad u(x, t)=\sum_{k} \hat{u}_{k}(0) e^{i k(x+t)} \quad \text { all waves travel to left with velocity } 1
$$

$$
n=2: \quad u(x, t)=\sum_{k} \hat{u}_{k}(0) e^{i k x} e^{-k^{2} t} \quad \text { frequency } k \text { decays with } e^{-k^{2} t}
$$

$$
n=3: \quad u(x, t)=\sum_{k}^{k} \hat{u}_{k}(0) e^{i k\left(x-k^{2} t\right)} \quad \begin{aligned}
& \text { frequency } k \text { travels to right } \\
& \text { with velocity } k^{2} \rightarrow \text { dispersic }
\end{aligned}
$$

$$
\text { with velocity } k^{2} \rightarrow \text { dispersion }
$$

$$
\begin{aligned}
n=4: \quad u(x, t)=\sum_{k} \hat{u}_{k}(0) e^{i k x} e^{k^{4} t} & \begin{array}{l}
\text { all frequencies are amplified } \\
\end{array} \rightarrow \text { unstable }
\end{aligned}
$$

$\underline{\text { Message: }}$
For linear PDE IVP, study behavior of waves $e^{i k x}$.
The ansatz $u(x, t)=e^{-i w t} e^{i k x}$ yields a dispersion relation of $w$ to $k$.
The wave $e^{i k x}$ is transformed by the growth factor $e^{-i w(k) t}$.
Ex.:
wave equation: $\quad u_{t t}=c^{2} u_{x x} \quad w= \pm c k \quad$ conservative $\quad\left|e^{ \pm i c k t}\right|=1$
heat equation: $\quad u_{t}=d u_{x x} \quad w=-i d k^{2} \quad$ dissipative $\quad\left|e^{-d k^{2} t}\right| \rightarrow 0$
conv.-diffusion: $\quad u_{t}=c u_{x}+d u_{x x} \quad w=-c k-i d k^{2} \quad$ dissipative $\quad\left|e^{i c k t} e^{-d k^{2} t}\right| \rightarrow 0$
Schrödinger: $\quad i u_{t}=u_{x x} \quad w=-k^{2} \quad$ dispersive $\quad\left|e^{i k^{2} t}\right|=1$
Airy equation: $\quad u_{t}=u_{x x x} \quad$ dispersive $\quad\left|e^{-i k^{3} t}\right|=1$

MIT OpenCourseWare
http://ocw.mit.edu

### 18.336 Numerical Methods for Partial Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

