Well-Posedness

<u>Def.</u>: A PDE is called well-posed (in the sense of Hadamard), if

- (1) a solution exists
- (2) the solution is unique
- (3) the solution depends continuously on the data

(initial conditions, boundary conditions, right hand side)

Careful: Existence and uniqueness involves boundary conditions

Ex.: $u_{xx} + u = 0$ a) $u(0) = 0, u(\frac{\pi}{2}) = 1 \Rightarrow$ unique solution $u(x) = \sin(x)$ b) $u(0) = 0, u(\pi) = 1 \Rightarrow$ no solution c) $u(0) = 0, u(\pi) = 0 \Rightarrow$ infinitely many solutions: $u(x) = A \sin(x)$

Continuous dependence depends on considered metric/norm.

We typically consider $|| \cdot ||_{L^{\infty}}, || \cdot ||_{L^2}, || \cdot ||_{L^1}$.

 $\underline{\mathbf{Ex.}}$:

$$\left\{ \begin{array}{ll} u_t = u_{xx} & \text{heat equation} \\ u(0,t) = u(1,t) = 0 & \text{boundary conditions} \\ u(x,0) = u_0(x) & \text{initial conditions} \end{array} \right\} \text{ well-posed} \\ \left\{ \begin{array}{ll} u_t = -u_{xx} & \text{backwards heat equation} \\ u(0,t) = u(1,t) & \text{boundary conditions} \\ u(x,0) = u_0(x) & \text{initial conditions} \end{array} \right\} \text{ no continuous dependence} \\ \text{on initial data [later]} \end{array}$$

Notions of Solutions

Classical solution

$$k^{th} \text{ order PDE} \Rightarrow u \in C^{k}$$

$$\underline{\text{Ex.}}: \nabla^{2}u = 0 \Rightarrow u \in C^{\infty}$$

$$\left\{\begin{array}{l}u_{t} + u_{x} = 0\\u(x,0) \in C^{1}\end{array}\right\} \Rightarrow u(x,t) \in C^{1}$$

 $\frac{\text{Weak solution}}{k^{th} \text{ order PDE, but } u \notin C^k.$

 $\underline{\mathbf{Ex.}}$: Discontinuous coefficients

$$\begin{cases} (b(x)u_x)_x = 0\\ u(0) = 0\\ u(1) = 1\\ b(x) = \begin{cases} 1 & x < \frac{1}{2}\\ 2 & x \ge \frac{1}{2} \end{cases} \end{cases} \Rightarrow u(x) = \begin{cases} \frac{4}{3}x & x < \frac{1}{2}\\ \frac{3}{3}x + \frac{1}{3} & x \ge \frac{1}{2} \end{cases}$$

 $\underline{\text{Ex.}}$: Conservation laws

 $u_t + (\frac{1}{2}u^2)_x = 0$ Burgers' equation

Image by MIT OpenCourseWare.

Fourier Methods for Linear IVP

IVP = initial value problem

$u_t = u_x$	advection equation
$u_t = u_{xx}$	heat equation
$u_t = u_{xxx}$	Airy's equation
$u_t = u_{xxxx}$	

a) on whole real axis: $u(x,t) = \int_{w=-\infty}^{w=+\infty} e^{iwx} \hat{u}(w,t) dw$ Fourier transform b) periodic case $x \in [-\pi,\pi[:u(x,t) = \sum_{k=-\infty}^{+\infty} \hat{u}_k(t)e^{ikx}]$ Fourier series (FS)

Here case b).

PDE:
$$\frac{\partial u}{\partial t}(x,t) - \frac{\partial^n u}{\partial x^n}(x,t) = 0$$

insert FS: $\sum_{k=-\infty}^{+\infty} \left(\frac{d\hat{u}_k}{dt}(t) - (ik)^n \hat{u}_k(t)\right) e^{ikx} = 0$
Since $(e^{ikx})_{k\in\mathbb{Z}}$ linearly independent:
 $d\hat{u}_k$

 $\frac{du_k}{dt} = (ik)^n \hat{u}_k(t)$ ODE for each Fourier coefficient

Solution:

$$\hat{u}_k(t) = e^{(ik)^n t} \underbrace{\hat{u}_k(0)}_{k}$$

Fourier coefficient of initial conditions: $\hat{u}_k(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u_0(x) e^{-ikx} dx$

$$\Rightarrow u(x,t) = \sum_{k=-\infty}^{+\infty} \hat{u}_k(0) e^{ikx} e^{(ik)^n t}$$

$$n = 1: \quad u(x,t) = \sum_{k} \hat{u}_{k}(0)e^{ik(x+t)}$$

$$n = 2: \quad u(x,t) = \sum_{k}^{k} \hat{u}_{k}(0)e^{ikx}e^{-k^{2}t}$$

$$n = 3: \quad u(x,t) = \sum_{k}^{k} \hat{u}_{k}(0)e^{ik(x-k^{2}t)}$$

$$n = 4: \quad u(x,t) = \sum_{k}^{k} \hat{u}_{k}(0)e^{ikx}e^{k^{4}t}$$

all waves travel to left with velocity 1

frequency k decays with e^{-k^2t}

frequency k travels to right with velocity $k^2 \rightarrow$ dispersion all frequencies are amplified \rightarrow unstable

Message:

For linear PDE IVP, study behavior of waves e^{ikx} . The ansatz $u(x,t) = e^{-iwt}e^{ikx}$ yields a dispersion relation of w to k. The wave e^{ikx} is transformed by the growth factor $e^{-iw(k)t}$.

 $\underline{\mathbf{Ex.}}$:

wave equation:	$u_{tt} = c^2 u_{xx}$	$w = \pm ck$	conservative	$ e^{\pm ickt} = 1$
heat equation:	$u_t = du_{xx}$	$w = -idk^2$	dissipative	$ e^{-dk^2t} \to 0$
convdiffusion:	$u_t = cu_x + du_{xx}$	$w=-ck\!-\!idk^2$	dissipative	$ e^{ickt}e^{-dk^2t} \to 0$
Schrödinger:	$iu_t = u_{xx}$	$w = -k^2$	dispersive	$ e^{ik^2t} = 1$
Airy equation:	$u_t = u_{xxx}$	$w = k^3$	dispersive	$ e^{-ik^3t} = 1$

18.336 Numerical Methods for Partial Differential Equations Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.