Conservation Laws

$$
\begin{aligned}
& u_{t}+(f(u))_{x}=0 \stackrel{\text { if }}{\stackrel{u \in C^{1}}{\Longleftrightarrow}} u_{t}+\underbrace{f^{\prime}(u)}_{=c(u)} u_{x}=0 \\
& \text { Conservation form } \quad \text { Differential form } \\
& \begin{array}{l}
\hat{\downarrow} \\
\frac{d}{d t} \int_{a}^{b} u(x, t) d x=f(u(a, t))-f(u(b, t)) \quad f=\text { flux function }
\end{array}
\end{aligned}
$$

Integral form
Ex.: Transport equation
$f(u)=c u \Rightarrow c(u)=f^{\prime}(u)=c$
Ex.: Burgers' equation
$f(u)=\frac{1}{2} u^{2} \Rightarrow c(u)=f^{\prime}(u)=u$
$u_{t}+u u_{x}=0$
Model for fluid flow
Material derivative: $\frac{D u}{D t}=u_{t}+(u \cdot \nabla) u \stackrel{1 D}{=} u_{t}+u u_{x}$
Ex.: Traffic flow
$\rho(x, t)=$ vehicle density $\left\{\begin{array}{ll}\rho=0 & \text { empty } \\ \rho=1 & \text { packed }\end{array}\right\}$

Image by MIT OpenCourseWare.
$m(t)=\int_{a}^{b} \rho(x, t) d x=$ number of vehicles in $[a, b]$
$\frac{d}{d t} m(t)=f(\rho(a, t))-f(\rho(b, t))$
Influx Outflux

Equation: $\quad \rho_{t}+(f(\rho))_{x}=0 \quad$ where $\quad f(\rho)=\underbrace{v}_{\text {vehicle velocit }} \cdot \rho$ vehicle velocity

Velocity function
$v=v(\rho)=1-\rho$

Flux function
$\Rightarrow f(\rho)=\rho(1-\rho)$

Velocity of information $c(\rho)=f^{\prime}(\rho)=1-2 \rho$

Method of Characteristics

$$
\left\{\begin{array}{l}
u_{t}+f^{\prime}(u) u_{x}=0 \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

Follow solution along line $x_{0}+c t$, where $c=f^{\prime}\left(u_{0}\left(x_{0}\right)\right)$.

$$
\begin{aligned}
\frac{d}{d t} u(x+c t, t) & =c u_{x}(x+c t, t)+u_{t}(x+c t, t) \\
& =\underbrace{\left(c-f^{\prime}(u(x+c t, t))\right)}_{=0} \cdot u_{x}(x+c t, t)=0 \\
\Rightarrow u(x+c t, t) & =\text { constant }=u\left(x_{0}, 0\right)=u_{0}\left(x_{0}\right) .
\end{aligned}
$$

Ex.:

Transport
Burgers'
Traffic

Characteristic lines intersect \Rightarrow shocks

Weak Solutions
$(*)\left\{\begin{array}{l}u_{t}+(f(u))_{x}=0 \\ u(x, 0)=u_{0}(x)\end{array}\right.$
Solution for $u_{0} \in C^{1}$ smooth until characteristics cross.

$$
\begin{aligned}
& \quad x_{1}+f^{\prime}\left(u_{0}\left(x_{1}\right)\right) \cdot t=x_{2}+f^{\prime}\left(u_{0}\left(x_{2}\right)\right) \cdot t \\
& \quad \Rightarrow t=-\frac{x_{2}-x_{1}}{f^{\prime}\left(u_{0}\left(x_{2}\right)\right)-f^{\prime}\left(u_{0}\left(x_{1}\right)\right)}=-\frac{1}{\left(f^{\prime} \circ u_{0}\right)^{\prime}(\tilde{x})} \tilde{x} \in\left[x_{1}, x_{2}\right] \\
& \quad=-\frac{1}{f^{\prime \prime}\left(u_{0}(\tilde{x})\right) u_{0}{ }^{\prime}(\tilde{x})} \\
& \Rightarrow t_{s}=-\frac{1}{\inf _{x} f^{\prime \prime}\left(u_{0}(x)\right) u_{0}^{\prime}(x)}
\end{aligned}
$$

Weak formulation
$\underset{\infty}{\text { Image by MIT OpenCourseWare. }}$
$(* *) \int_{0}^{\infty} \int_{-\infty}^{+\infty} u \varphi_{t}+f(u) \varphi_{x} d x d t=-\int_{-\infty}^{+\infty}[u \varphi]_{t=0} d x \quad \forall \underbrace{\varphi \in C_{0}^{1}}$
Test function, C^{1} with compact support
If $u \in C^{1}$ ("classical solution"), then $(*) \Leftrightarrow(* *)$
Proof: integration by parts.
In addition, ($* *$) admits discontinuous solutions.
Riemann Problem

$$
\begin{gathered}
u_{0}(x)=\left\{\begin{array}{ll}
u_{L} & x<0 \\
u_{R} & x \geq 0
\end{array}\right\} \\
\left(u_{L}-u_{R}\right) \cdot s=\frac{d}{d t} \int_{a}^{b} u(x, t) d x \\
=f\left(u_{L}\right)-f\left(u_{R}\right) \\
\Rightarrow s=\frac{f\left(u_{R}\right)-f\left(u_{L}\right)}{u_{R}-u_{L}}
\end{gathered}
$$

Image by MIT OpenCourseWare.

Rankine-Hugoniot Condition for shocks

Ex.: Burgers'

$s=\frac{\frac{1}{2} u_{R}^{2}-\frac{1}{2} u_{L}^{2}}{u_{R}-u_{L}}={\frac{u_{L}+u_{R}}{2}}_{\text {Image by MIT OpenCourseWare. }}$.

Replace breaking wave by shock
Image by MIT OpenCourseWare.
Rarefactions
Ex.: Burgers'
Many weak solutions...

Image by MIT OpenCourseWare.
This is what physics yields (stable w.r.t. small perturbations)

Entropy Condition to single out unique weak solution:

- Characteristics go into shock:
$f^{\prime}\left(u_{L}\right)>s>f^{\prime}\left(u_{R}\right)$
- Solution to $u_{t}+(f(u))_{x}=0$ is limit of $u_{t}+(f(u))_{x}=\nu u_{x x}$ as $\nu \rightarrow 0$
"Vanishing viscosity"
- Many more...

All equivalent.

MIT OpenCourseWare
http://ocw.mit.edu

18.336 Numerical Methods for Partial Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

