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Modified Equation 

Idea: Given FD approximation to PDE 

Find another PDE which is approximated better by FD scheme. 
Learn from new PDE about FD scheme. 

Ex.: ut = cux 
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Modified equation:
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Advection-diffusion equation with diffusion constant
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added diffusion antidiffusion by central differencing 

Ex.: Upwind: 
ut − cux = 

2
1 cΔx(1 − r)uxx (exercise)


Compare:


For c = 1, r = 
2
1 DLF = 

4
3 Δx , DUW = 

4
1 Δx
−→ 

Upwind less diffusive than LF. 

Ex.: Lax-Wendroff 
ut − cux = 1 cΔx2(r2 − 1)uxxx (uxx cancels by construction) 
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Advection-dispersion equation with dissipation constant


µ = −
6
1 cΔx2(1 − r2)


Disturbances behave like Airy’s equation


Message: 

First order methods behave diffusive. 
Second order methods behave dispersive. 
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More on Advection Equation 

ut + cux = 0


So far:
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Semidiscretization: 

Central: ux = 
Uj+1 − Uj−1 

+ O(Δx 2)
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AT = −A ⇒ eigenvalues purely imaginary 

Need time discretization that is stable for u̇ = λu with λ = iµ, µ ∈ R


Linear Stability for ODE:


Region of absolute stability = {λ ∈ C : method stable for u̇ = λu}
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Ex.: 

Forward Euler Backward Euler Trapezoidal 
un+1 = un + λΔtun

n+1 1 n n+1 1 + 
2
1 λΔt 

u = u u = 
= (1 + λΔt)un 1 − λΔt 1 − 

2
1 λΔt 

Stable if |1 + λΔt| ≤ 1 

RK4 RK2 Adams-Bashforth 3


Can also use higher order discretization of ux 

(up to spectral). If central need ODE solver for timestep ⇒
that is stable for u̇ = iµu. 

Spurious Oscillations 

Stable does not imply “no oscillations.” 

Ex.: Lax-Wendroff 

Overshoots remain 
bounded stable.⇒
Still bad (e.g. density can 
become negative) 
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Total Variation: 

TV (u) = |uj+1 − uj | ≈ |ux(x)|dx “total up and down” 
j 

Method total variation diminishing (TVD), if

TV (un+1) ≤ TV (un).


Bad News: Any linear method for advection that is TVD,

is at most first order accurate.


[i.e.: high order spurious oscillations]
→ 

Remedy: Nonlinear Methods: 

1. Flux-/Slope- Limiters 

� conservation laws; limit flux TVD→ 

2. ENO/WENO 

(weighted) essentially non-oscillatory

(essentially TVD; no noticeable spurious oscillations)


ENO/WENO 

Approximate ux by interpolation. 

ENO: At each point consider multiple interpolating polynomials (through 
various choices of neighbors). Select the most “stable” one to define ux. 

WENO: Define ux as weighted average of multiple interpolants. 
Higher order when u smooth, no overshoots when u non-smooth. 

4




� � 

Ex.: Fifth order WENO


s1 = 13 (v1 − 2v2 + v3)
2 + 1 (v1 − 4v2 + 3v3)

2 
12 4 

s2 = 13 (v2 − 2v3 + v4)
2 + 1 (v2 − v4)

2 
12 4


= 13 + 1 (3v3 − 4v4 + v5)
2 = 

Uj+1 − Uj
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2
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sa = a1 + a2 + a3 
a1w1 = 
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a2
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w = 1 (2v1 − 7v2 + 11v3) + w2 · (−v2 + 5v3 + 2v4) + w3 · (2v3 + 5v4 − v5))6 (w1 · 

Left sided approximation to ux at x4


Right sided approximation to ux at x3


ut + cux = 0


Upwind WENO with FE:


Uj
n+1 − Uj

n � 
−c WENOleft Uj

n > 0 
�


= 
· 

Δt −c WENOright Uj
n ≤ 0· 

TVD time stepping 

Consider method that is TVD with FE. 
Is it also TVD with high order time stepping? 
In general: “no.” 
But for special class of ODE schemes: “yes.” 
Strong Stability Preserving (SSP) methods 
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Ex.: FE (un) = un + Δtf(un) 

RK3-TVD 
1 2 3 1n+1 u
n + u
n + FE(FE(u
n)))FE (
u
 =

3 3 4 4

Convex combination of FE steps 
⇒ Preserves TVD property 

Compare: Classical RK4 cannot by written this way. 
It is not SSP. 

Popular approach for linear advection:

ut + cux = 0


RK3-TVD in time, upwinded WENO5 in space.


2D/3D: Tensor product in space.


WENO5-stencil
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