Lecture 17 Other Eigenvalue Algorithms

MIT 18.335J / 6.337J

Introduction to Numerical Methods

Per-Olof Persson

November 7, 2006

The Jacobi Algorithm

• Diagonalize 2×2 real symmetric matrix by a *Jacobi rotation*:

$$J^{T} \begin{bmatrix} a & d \\ d & b \end{bmatrix} J = \begin{bmatrix} \neq 0 & 0 \\ 0 & \neq 0 \end{bmatrix}$$

where

$$J = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}, \quad \tan(2\theta) = \frac{2d}{b-a}$$

- Iteratively apply transformation to 2 rows and 2 columns of $A \in \mathbb{R}^{m \times m}$
- Loop over all pairs of rows/columns, quadratic convergence
- $O(m^2)$ steps, O(m) operations per step $\Longrightarrow O(m^3)$ operation count

The Method of Bisection

- Idea: Search the real line for roots of $p(x) = \det(A xI)$
- Finding roots from coefficients highly unstable, but p(x) could be computed by elimination
- Important property: Eigenvalues of principal upper-left square submatrices $A^{(1)}, \ldots, A^{(m)}$ interlace

$$\lambda_j^{(k+1)} < \lambda_j^{(k)} < \lambda_{j+1}^{(k+1)}$$

The Method of Bisection

• Because of the interlacing property: The number of negative eigenvalues of A equals the number of sign changes in the Sturm sequence

1,
$$\det(A^{(1)})$$
, $\det(A^{(2)})$,..., $\det(A^{(m)})$

- Shift A to get number of eigenvalues in $(-\infty, b)$ and twice for [a, b)
- Three-term recurrence for the determinants:

$$\det(A^{(k)}) = a_k \det(A^{(k-1)}) - b_{k-1}^2 \det(A^{(k-2)})$$

• With shift xI and $p^{(k)}(x) = \det(A^{(k)} - xI)$:

$$p^{(k)}(x) = (a_k - x)p^{(k-1)}(x) - b_{k-1}^2 p^{(k-2)}(x)$$

• $O(m\log(\epsilon_{machine}))$ flops per eigenvalue, always high relative accuracy

• Split symmetric tridiagonal T into submatrices:

- $\bullet\,$ The sum of a 2×2 block-diagonal matrix and a rank-one correction
- Split T in equal sizes and compute eigenvalues of \hat{T}_1, \hat{T}_2 recursively
- Solve nonlinear problem to get eigenvalues of T from those of \hat{T}_1, \hat{T}_2

• Suppose diagonalizations $\hat{T}_1 = Q_1 D_1 Q_1^T$ and $\hat{T}_2 = Q_2 D_2 Q_2^T$ have been computed. We then have

$$T = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} \left(\begin{bmatrix} D_1 \\ D_2 \end{bmatrix} + \beta z z^T \right) \begin{bmatrix} Q_1^T \\ Q_2^T \end{bmatrix}$$

with $z^T = (q_1^T, q_2^T)$, where q_1^T is last row of Q_1 and q_2^T is first row of Q_2

 This is a similarity transformation =>> Find eigenvalues of diagonal matrix plus rank-one correction

• Eigenvalues of $D + ww^T$ are the roots of the rational function

- Solve the secular equation $f(\lambda)=0$ with nonlinear solver
- ${\cal O}(m)$ flops per root, ${\cal O}(m^2)$ flops for all roots
- Total cost for divide-and-conquer algorithm:

$$O\left(m^2 + 2\frac{m^2}{2^2} + 4\frac{m^2}{4^2} + 8\frac{m^2}{8^2} + \dots + m\frac{m^2}{m^2}\right) = O(m^2)$$

- For computing eigenvalues only, most of the operations are spent in the tridiagonal reduction, and the constant in "Phase 2" is not important
- However, for computing eigenvectors, divide-and-conquer reduces Phase 2 to $4m^3/3$ flops compared to $6m^3$ for QR

18.335J / 6.337J Introduction to Numerical Methods Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.