Lecture 17 Other Eigenvalue Algorithms

MIT 18.335J / 6.337J
Introduction to Numerical Methods

Per-Olof Persson

November 7, 2006

The Jacobi Algorithm

- Diagonalize 2×2 real symmetric matrix by a Jacobi rotation:

$$
J^{T}\left[\begin{array}{ll}
a & d \\
d & b
\end{array}\right] J=\left[\begin{array}{cc}
\neq 0 & 0 \\
0 & \neq 0
\end{array}\right]
$$

where

$$
J=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right], \quad \tan (2 \theta)=\frac{2 d}{b-a}
$$

- Iteratively apply transformation to 2 rows and 2 columns of $A \in \mathbb{R}^{m \times m}$
- Loop over all pairs of rows/columns, quadratic convergence
- $O\left(m^{2}\right)$ steps, $O(m)$ operations per step $\Longrightarrow O\left(m^{3}\right)$ operation count

The Method of Bisection

- Idea: Search the real line for roots of $p(x)=\operatorname{det}(A-x I)$
- Finding roots from coefficients highly unstable, but $p(x)$ could be computed by elimination
- Important property: Eigenvalues of principal upper-left square submatrices $A^{(1)}, \ldots, A^{(m)}$ interlace

$$
\lambda_{j}^{(k+1)}<\lambda_{j}^{(k)}<\lambda_{j+1}^{(k+1)}
$$

The Method of Bisection

- Because of the interlacing property: The number of negative eigenvalues of A equals the number of sign changes in the Sturm sequence

$$
1, \operatorname{det}\left(A^{(1)}\right), \operatorname{det}\left(A^{(2)}\right), \ldots, \operatorname{det}\left(A^{(m)}\right)
$$

- Shift A to get number of eigenvalues in $(-\infty, b)$ and twice for $[a, b)$
- Three-term recurrence for the determinants:

$$
\operatorname{det}\left(A^{(k)}\right)=a_{k} \operatorname{det}\left(A^{(k-1)}\right)-b_{k-1}^{2} \operatorname{det}\left(A^{(k-2)}\right)
$$

- With shift $x I$ and $p^{(k)}(x)=\operatorname{det}\left(A^{(k)}-x I\right)$:

$$
p^{(k)}(x)=\left(a_{k}-x\right) p^{(k-1)}(x)-b_{k-1}^{2} p^{(k-2)}(x)
$$

- $O\left(m \log \left(\epsilon_{\text {machine }}\right)\right.$ flops per eigenvalue, always high relative accuracy

The Divide-and-Conquer Algorithm

- Split symmetric tridiagonal T into submatrices:

- The sum of a 2×2 block-diagonal matrix and a rank-one correction
- Split T in equal sizes and compute eigenvalues of \hat{T}_{1}, \hat{T}_{2} recursively
- Solve nonlinear problem to get eigenvalues of T from those of \hat{T}_{1}, \hat{T}_{2}

The Divide-and-Conquer Algorithm

- Suppose diagonalizations $\hat{T}_{1}=Q_{1} D_{1} Q_{1}^{T}$ and $\hat{T}_{2}=Q_{2} D_{2} Q_{2}^{T}$ have been computed. We then have

$$
T=\left[\begin{array}{ll}
Q_{1} & \\
& Q_{2}
\end{array}\right]\left(\left[\begin{array}{ll}
D_{1} & \\
& D_{2}
\end{array}\right]+\beta z z^{T}\right)\left[\begin{array}{ll}
Q_{1}^{T} & \\
& Q_{2}^{T}
\end{array}\right]
$$

with $z^{T}=\left(q_{1}^{T}, q_{2}^{T}\right)$, where q_{1}^{T} is last row of Q_{1} and q_{2}^{T} is first row of Q_{2}

- This is a similarity transformation \Longrightarrow Find eigenvalues of diagonal matrix plus rank-one correction

The Divide-and-Conquer Algorithm

- Eigenvalues of $D+w w^{T}$ are the roots of the rational function

$$
f(\lambda)=1+\sum_{j=1}^{m} \frac{w_{j}^{2}}{d_{j}-\lambda}
$$

The Divide-and-Conquer Algorithm

- Solve the secular equation $f(\lambda)=0$ with nonlinear solver
- $O(m)$ flops per root, $O\left(m^{2}\right)$ flops for all roots
- Total cost for divide-and-conquer algorithm:

$$
O\left(m^{2}+2 \frac{m^{2}}{2^{2}}+4 \frac{m^{2}}{4^{2}}+8 \frac{m^{2}}{8^{2}}+\cdots+m \frac{m^{2}}{m^{2}}\right)=O\left(m^{2}\right)
$$

- For computing eigenvalues only, most of the operations are spent in the tridiagonal reduction, and the constant in "Phase 2" is not important
- However, for computing eigenvectors, divide-and-conquer reduces Phase 2 to $4 m^{3} / 3$ flops compared to $6 m^{3}$ for QR

MIT OpenCourseWare
http://ocw.mit.edu
18.335J / 6.337J Introduction to Numerical Methods

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

