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Simultaneous Inverse Iteration ⇐⇒ QR Algorithm


•	 Last lecture we showed that “pure” QR ⇐⇒ simultaneous iteration


applied to I , and the first column evolves as in power iteration


•	 But it is also equivalent to simultaneous inverse iteration applied to a


“flipped” I , and the last column evolves as in inverse iteration


• To see this, recall that Ak = Q(k)R(k) with
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• Invert and use that A−1 is symmetric: 

A−k = (R(k))−1Q(k)T Q(k)(R(k))−T = 

2 



Simultaneous Inverse Iteration ⇐⇒ QR Algorithm


• Introduce the “flipping” permutation matrix 

  

1 
  

 

1 


P = 
  

 · · ·  

1 

and rewrite that last expression as 

A−kP = [Q(k)P ][P (R(k))−T P ] 

• This is a QR factorization of A−kP , and the algorithm is equivalent to 

simultaneous iteration on A−1 

• In particular, the last column of Q(k) evolves as in inverse iteration 
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The Shifted QR Algorithm


•	 Since the QR algorithm behaves like inverse iteration, introduce shifts µ(k) 

to accelerate the convergence: 

A(k−1) − µ(k)I Q(k)R(k)=


A(k) = R(k)Q(k) + µ(k)I 

•	 We then get (same as before): 

A(k) = (Q(k))T A(k−1)Q(k) = (Q(k))T AQ(k) 

and (different from before): 

(A − µ(k)I)(A − µ(k−1)I) · · · (A − µ(1)I) = Q(k)R(k) 

• Shifted simultaneous iteration – last column of Q(k) converges quickly 
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Choosing µ(k): The Rayleigh Quotient Shift


•	 Natural choice of µ(k): Rayleigh quotient for last column of Q(k) 

(k) (k) 
(k)µ = 

(qm )T Aqm 
= (q(k))T Aq(k) 

(k) (k) m m 
(qm )T qm 

(k)
•	 Rayleigh quotient iteration, last column qm converges cubically 

•	 Convenient fact: This Rayleigh quotient appears as m, m entry of A(k) 

since A(k) = (Q(k))T AQ(k) 

(k) (k)
•	 The Rayleigh quotient shift corresponds to setting µ = Amm 
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Choosing µ(k): The Wilkinson Shift


•	 The QR algorithm with Rayleigh quotient shift might fail, e.g. with two 

symmetric eigenvalues 

•	 Break symmetry by the Wilkinson shift 

µ = am − sign(δ)b2	 |δ| + δ2 + b2 
m−1	 m−1 

	  

am−1 bm−1 
where δ = (am−1 − am)/2 and B =   is the lower-right 

bm−1 am 

submatrix of A(k) 

•	 Always convergence with this shift, in worst case quadratically 
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A Practical Shifted QR Algorithm


Algorithm: “Practical” QR Algorithm 

(Q(0))T A(0)Q(0) = A A(0) is a tridiagonalization of A


for k = 1, 2, . . .


(k) (k) (k−1) 
Pick a shift µ e.g., choose µ = Amm 

Q(k)R(k) = A(k−1) − µ(k)I QR factorization of A(k−1) − µ(k)I 

A(k) R(k)Q(k) + µ(k)I= Recombine factors in reverse order 

(k)
If any off-diagonal element Aj,j+1 is sufficiently close to zero, 

set Aj,j+1 = Aj+1,j = 0 to obtain 

A1 0 
= A(k) 

0 A2 

and now apply the QR algorithm to A1 and A2
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Stability and Accuracy


• The QR algorithm is backward stable: 

Q̃Λ̃Q̃T = A + δA, 
�δA� 

= O(ǫmachine)
�A�


where Λ̃ is the computed Λ and Q̃ is an exactly orthogonal matrix


• The combination with Hessenberg reduction is also backward stable 

•	 Can be shown (for normal matrices) that |λ̃j − λj | ≤ �δA�2, which gives 

|λ̃j − λj | 
= O(ǫmachine)

�A�


where λ̃j are the computed eigenvalues


8




MIT OpenCourseWare
http://ocw.mit.edu 

18.335J / 6.337J Introduction to Numerical Methods
Fall 2010
 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

