Lecture 15 The QR Algorithm I

MIT 18.335J / 6.337J

Introduction to Numerical Methods

Per-Olof Persson

October 31, 2006

Real Symmetric Matrices

- We will only consider eigenvalue problems for real symmetric matrices
- Then $A=A^T\in\mathbb{R}^{m\times m}$, $x\in\mathbb{R}^m$, $x^*=x^T$, and $\|x\|=\sqrt{x^Tx}$
- A then also has

real eigenvalues: $\lambda_1, \ldots, \lambda_m$ orthonormal eigenvectors: q_1, \ldots, q_m

- ullet Eigenvectors are normalized $\|q_j\|=1$, and sometimes the eigenvalues are ordered in a particular way
- Initial reduction to tridiagonal form assumed
 - Brings cost for typical steps down from ${\cal O}(m^3)$ to ${\cal O}(m)$

Rayleigh Quotient

• The Rayleigh quotient of $x \in \mathbb{R}^m$:

$$r(x) = \frac{x^T A x}{x^T x}$$

- ullet For an eigenvector x, the corresponding eigenvalue is $r(x)=\lambda$
- \bullet For general x , $r(x) = \alpha$ that minimizes $\|Ax \alpha x\|_2$
- x eigenvector of $A \Longleftrightarrow \nabla r(x) = 0$ with $x \neq 0$
- r(x) is smooth and $\nabla r(q_j) = 0$, therefore quadratically accurate:

$$r(x) - r(q_J) = O(\|x - q_J\|^2) \text{ as } x \to q_J$$

Power Iteration

Simple power iteration for largest eigenvalue:

Algorithm: Power Iteration

$$v^{(0)} = \text{some vector with } ||v^{(0)}|| = 1$$

for
$$k = 1, 2, ...$$

$$w = Av^{(k-1)}$$

$$v^{(k)} = w/\|w\|$$

$$\lambda^{(k)} = (v^{(k)})^T A v^{(k)}$$

apply A

normalize

Rayleigh quotient

Termination conditions usually omitted

Convergence of Power Iteration

• Expand initial $v^{(0)}$ in orthonormal eigenvectors q_i , and apply A^k :

$$v^{(0)} = a_1 q_1 + a_2 q_2 + \dots + a_m q_m$$

$$v^{(k)} = c_k A^k v^{(0)}$$

$$= c_k (a_1 \lambda_1^k q_1 + a_2 \lambda_2^k q_2 + \dots + a_m \lambda_m^k q_m)$$

$$= c_k \lambda_1^k (a_1 q_1 + a_2 (\lambda_2 / \lambda_1)^k q_2 + \dots + a_m (\lambda_m / \lambda_1)^k q_m)$$

• If $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_m| \ge 0$ and $q_1^T v^{(0)} \ne 0$, this gives:

$$||v^{(k)} - (\pm q_1)|| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right), \qquad |\lambda^{(k)} - \lambda_1| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right)$$

- ullet Finds the largest eigenvalue (unless eigenvector orthogonal to $v^{(0)}$)
- ullet Linear convergence, factor $pprox \lambda_2/\lambda_1$ at each iteration

Inverse Iteration

• Apply power iteration on $(A - \mu I)^{-1}$, with eigenvalues $(\lambda_j - \mu)^{-1}$

Algorithm: Inverse Iteration

$$v^{(0)} = \text{some vector with } \|v^{(0)}\| = 1$$

for
$$k = 1, 2, ...$$

Solve
$$(A - \mu I)w = v^{(k-1)}$$
 for w

$$v^{(k)} = w/\|w\|$$

$$\lambda^{(k)} = (v^{(k)})^T A v^{(k)}$$

apply
$$(A-\mu I)^{-1}$$

normalize

Rayleigh quotient

• Converges to eigenvector q_J if the parameter μ is close to λ_J :

$$||v^{(k)} - (\pm q_j)|| = O\left(\left|\frac{\mu - \lambda_J}{\mu - \lambda_K}\right|^k\right), \qquad |\lambda^{(k)} - \lambda_J| = O\left(\left|\frac{\mu - \lambda_J}{\mu - \lambda_K}\right|^{2k}\right)$$

Rayleigh Quotient Iteration

- ullet Parameter μ is constant in inverse iteration, but convergence is better for μ close to the eigenvalue
- ullet Improvement: At each iteration, set μ to last computed Rayleigh quotient

Algorithm: Rayleigh Quotient Iteration

$$\begin{split} v^{(0)} &= \text{some vector with } \|v^{(0)}\| = 1 \\ \lambda^{(0)} &= (v^{(0)})^T A v^{(0)} = \text{corresponding Rayleigh quotient} \\ \text{for } k = 1, 2, \dots \\ & \text{Solve } (A - \lambda^{(k-1)} I) w = v^{(k-1)} \text{ for } w \quad \text{apply matrix} \\ v^{(k)} &= w/\|w\| \quad \text{normalize} \\ \lambda^{(k)} &= (v^{(k)})^T A v^{(k)} \quad \text{Rayleigh quotient} \end{split}$$

Convergence of Rayleigh Quotient Iteration

Cubic convergence in Rayleigh quotient iteration:

$$||v^{(k+1)} - (\pm q_J)|| = O(||v^{(k)} - (\pm q_J)||^3)$$

and

$$|\lambda^{(k+1)} - \lambda_J| = O(|\lambda^{(k)} - \lambda_J|^3)$$

• Proof idea: If $v^{(k)}$ is close to an eigenvector, $||v^{(k)} - q_J|| \le \epsilon$, then the accurate of the Rayleigh quotient estimate $\lambda^{(k)}$ is $|\lambda^{(k)} - \lambda_J| = O(\epsilon^2)$. One step of inverse iteration then gives

$$||v^{(k+1)} - q_J|| = O(|\lambda^{(k)} - \lambda_J| ||v^{(k)} - q_J||) = O(\epsilon^3)$$

The QR Algorithm

Remarkably simple algorithm: QR factorize and multiply in reverse order:

Algorithm: "Pure" QR Algorithm

$$A^{(0)} = A$$

for $k=1,2,\ldots$

$$Q^{(k)}R^{(k)} = A^{(k-1)}$$

 $A^{(k)} = R^{(k)}Q^{(k)}$

QR factorization of $A^{(k-1)}$

Recombine factors in reverse order

- \bullet With some assumptions, $A^{(k)}$ converge to a Schur form for A (diagonal if A symmetric)
- Similarity transformations of A:

$$A^{(k)} = R^{(k)}Q^{(k)} = (Q^{(k)})^T A^{(k-1)}Q^{(k)}$$

Unnormalized Simultaneous Iteration

- To understand the QR algorithm, first consider a simpler algorithm
- Simultaneous Iteration is power iteration applied to several vectors
- Start with linearly independent $v_1^{(0)}, \ldots, v_n^{(0)}$
- ullet We know from power iteration that $A^k v_1^{(0)}$ converges to q_1
- With some assumptions, the space $\langle A^k v_1^{(0)}, \dots, A^k v_n^{(0)} \rangle$ should converge to q_1, \dots, q_n
- Notation: Define initial matrix $V^{(0)}$ and matrix $V^{(k)}$ at step k:

$$V^{(0)} = \left[\begin{array}{c|c} v_1^{(0)} & \cdots & v_n^{(0)} \end{array} \right], \quad V^{(k)} = A^k V^{(0)} = \left[\begin{array}{c|c} v_1^{(k)} & \cdots & v_n^{(k)} \end{array} \right]$$

Unnormalized Simultaneous Iteration

- ullet Define well-behaved basis for column space of $V^{(k)}$ by $\hat{Q}^{(k)}\hat{R}^{(k)}=V^{(k)}$
- Make the assumptions:
 - The leading n+1 eigenvalues are distinct
 - All principal leading principal submatrices of $\hat{Q}^T V^{(0)}$ are nonsingular, where columns of \hat{Q} are q_1,\ldots,q_n

We then have that the columns of $\hat{Q}^{(k)}$ converge to eigenvectors of A:

$$||q_j^{(k)} - \pm q_j|| = O(C^k)$$

where
$$C = \max_{1 \le k \le n} |\lambda_{k+1}|/|\lambda_k|$$

Proof. Textbook / Black board

Simultaneous Iteration

- ullet The matrices $V^{(k)}=A^kV^{(0)}$ are highly ill-conditioned
- Orthonormalize at each step rather than at the end:

Algorithm: Simultaneous Iteration

Pick
$$\hat{Q}^{(0)} \in \mathbb{R}^{m \times n}$$
 for $k=1,2,\ldots$
$$Z = A\hat{Q}^{(k-1)}$$

$$\hat{Q}^{(k)}\hat{R}^{(k)} = Z$$

Reduced QR factorization of Z

• The column spaces of $\hat{Q}^{(k)}$ and $Z^{(k)}$ are both equal to the column space of $A^k\hat{Q}^{(0)}$, therefore same convergence as before

Simultaneous Iteration \iff QR Algorithm

- $\bullet\,$ The QR algorithm is equivalent to simultaneous iteration with $\hat{Q}^{(0)}=I$
- \bullet Notation: Replace $\hat{R}^{(k)}$ by $R^{(k)}$, and $\hat{Q}^{(k)}$ by $\underline{Q}^{(k)}$

Simultaneous Iteration:

$$\underline{Q}^{(0)} = I$$

$$Z = \underline{A}\underline{Q}^{(k-1)}$$

$$Z = \underline{Q}^{(k)}R^{(k)}$$

$$A^{(k)} = (Q^{(k)})^T A Q^{(k)}$$

Unshifted QR Algorithm:

$$A^{(0)} = A$$

$$A^{(k-1)} = Q^{(k)} R^{(k)}$$

$$A^{(k)} = R^{(k)} Q^{(k)}$$

$$\underline{Q}^{(k)} = Q^{(1)} Q^{(2)} \cdots Q^{(k)}$$

- Also define $\underline{R}^{(k)} = R^{(k)} R^{(k-1)} \cdots R^{(1)}$
- Now show that the two processes generate same sequences of matrices

Simultaneous Iteration \iff QR Algorithm

- \bullet Both schemes generate the QR factorization $A^k=\underline{Q}^{(k)}\underline{R}^{(k)}$ and the projection $A^{(k)}=(Q^{(k)})^TAQ^{(k)}$
- *Proof.* k = 0 trivial for both algorithms.

For $k \geq 1$ with simultaneous iteration, $A^{(k)}$ is given by definition, and

$$A^{k} = A\underline{Q}^{(k-1)}\underline{R}^{(k-1)} = \underline{Q}^{(k)}R^{(k)}\underline{R}^{(k-1)} = \underline{Q}^{(k)}\underline{R}^{(k)}$$

For $k \geq 1$ with unshifted QR, we have

$$A^{k} = A\underline{Q}^{(k-1)}\underline{R}^{(k-1)} = \underline{Q}^{(k-1)}A^{(k-1)}\underline{R}^{(k-1)} = \underline{Q}^{(k)}\underline{R}^{(k)}$$

and

$$A^{(k)} = (Q^{(k)})^T A^{(k-1)} Q^{(k)} = (\underline{Q}^{(k)})^T A \underline{Q}^{(k)}$$

MIT OpenCourseWare http://ocw.mit.edu

18.335J / 6.337J Introduction to Numerical Methods Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.