Lecture 15
 The QR Algorithm I

MIT 18.335J / 6.337J
Introduction to Numerical Methods

Per-Olof Persson

October 31, 2006

Real Symmetric Matrices

- We will only consider eigenvalue problems for real symmetric matrices
- Then $A=A^{T} \in \mathbb{R}^{m \times m}, x \in \mathbb{R}^{m}, x^{*}=x^{T}$, and $\|x\|=\sqrt{x^{T} x}$
- A then also has

$$
\text { real eigenvalues: } \lambda_{1}, \ldots, \lambda_{m}
$$

orthonormal eigenvectors: q_{1}, \ldots, q_{m}

- Eigenvectors are normalized $\left\|q_{j}\right\|=1$, and sometimes the eigenvalues are ordered in a particular way
- Initial reduction to tridiagonal form assumed
- Brings cost for typical steps down from $O\left(m^{3}\right)$ to $O(m)$

Rayleigh Quotient

- The Rayleigh quotient of $x \in \mathbb{R}^{m}$:

$$
r(x)=\frac{x^{T} A x}{x^{T} x}
$$

- For an eigenvector x, the corresponding eigenvalue is $r(x)=\lambda$
- For general $x, r(x)=\alpha$ that minimizes $\|A x-\alpha x\|_{2}$
- x eigenvector of $A \Longleftrightarrow \nabla r(x)=0$ with $x \neq 0$
- $r(x)$ is smooth and $\nabla r\left(q_{j}\right)=0$, therefore quadratically accurate:

$$
r(x)-r\left(q_{J}\right)=O\left(\left\|x-q_{J}\right\|^{2}\right) \text { as } x \rightarrow q_{J}
$$

Power Iteration

- Simple power iteration for largest eigenvalue:

Algorithm: Power Iteration

$v^{(0)}=$ some vector with $\left\|v^{(0)}\right\|=1$
for $k=1,2, \ldots$

$$
\begin{array}{ll}
w=A v^{(k-1)} & \text { apply } A \\
v^{(k)}=w /\|w\| & \text { normalize } \\
\lambda^{(k)}=\left(v^{(k)}\right)^{T} A v^{(k)} & \text { Rayleigh quotient }
\end{array}
$$

- Termination conditions usually omitted

Convergence of Power Iteration

- Expand initial $v^{(0)}$ in orthonormal eigenvectors q_{i}, and apply A^{k} :

$$
\begin{aligned}
v^{(0)} & =a_{1} q_{1}+a_{2} q_{2}+\cdots+a_{m} q_{m} \\
v^{(k)} & =c_{k} A^{k} v^{(0)} \\
& =c_{k}\left(a_{1} \lambda_{1}^{k} q_{1}+a_{2} \lambda_{2}^{k} q_{2}+\cdots+a_{m} \lambda_{m}^{k} q_{m}\right) \\
& =c_{k} \lambda_{1}^{k}\left(a_{1} q_{1}+a_{2}\left(\lambda_{2} / \lambda_{1}\right)^{k} q_{2}+\cdots+a_{m}\left(\lambda_{m} / \lambda_{1}\right)^{k} q_{m}\right)
\end{aligned}
$$

- If $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{m}\right| \geq 0$ and $q_{1}^{T} v^{(0)} \neq 0$, this gives:

$$
\left\|v^{(k)}-\left(\pm q_{1}\right)\right\|=O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right), \quad\left|\lambda^{(k)}-\lambda_{1}\right|=O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{2 k}\right)
$$

- Finds the largest eigenvalue (unless eigenvector orthogonal to $v^{(0)}$)
- Linear convergence, factor $\approx \lambda_{2} / \lambda_{1}$ at each iteration

Inverse Iteration

- Apply power iteration on $(A-\mu I)^{-1}$, with eigenvalues $\left(\lambda_{j}-\mu\right)^{-1}$

Algorithm: Inverse Iteration

$v^{(0)}=$ some vector with $\left\|v^{(0)}\right\|=1$
for $k=1,2, \ldots$

$$
\begin{array}{ll}
\text { Solve }(A-\mu I) w=v^{(k-1)} \text { for } w & \text { apply }(A-\mu I)^{-1} \\
v^{(k)}=w /\|w\| & \text { normalize } \\
\lambda^{(k)}=\left(v^{(k)}\right)^{T} A v^{(k)} & \text { Rayleigh quotient }
\end{array}
$$

- Converges to eigenvector q_{J} if the parameter μ is close to λ_{J} :

$$
\left\|v^{(k)}-\left(\pm q_{j}\right)\right\|=O\left(\left|\frac{\mu-\lambda_{J}}{\mu-\lambda_{K}}\right|^{k}\right), \quad\left|\lambda^{(k)}-\lambda_{J}\right|=O\left(\left|\frac{\mu-\lambda_{J}}{\mu-\lambda_{K}}\right|^{2 k}\right)
$$

Rayleigh Quotient Iteration

- Parameter μ is constant in inverse iteration, but convergence is better for μ close to the eigenvalue
- Improvement: At each iteration, set μ to last computed Rayleigh quotient

Algorithm: Rayleigh Quotient Iteration

$v^{(0)}=$ some vector with $\left\|v^{(0)}\right\|=1$
$\lambda^{(0)}=\left(v^{(0)}\right)^{T} A v^{(0)}=$ corresponding Rayleigh quotient for $k=1,2, \ldots$

$$
\begin{array}{ll}
\text { Solve }\left(A-\lambda^{(k-1)} I\right) w=v^{(k-1)} \text { for } w & \text { apply matrix } \\
v^{(k)}=w /\|w\| & \text { normalize } \\
\lambda^{(k)}=\left(v^{(k)}\right)^{T} A v^{(k)} & \text { Rayleigh quotient }
\end{array}
$$

Convergence of Rayleigh Quotient Iteration

- Cubic convergence in Rayleigh quotient iteration:

$$
\left\|v^{(k+1)}-\left(\pm q_{J}\right)\right\|=O\left(\left\|v^{(k)}-\left(\pm q_{J}\right)\right\|^{3}\right)
$$

and

$$
\left|\lambda^{(k+1)}-\lambda_{J}\right|=O\left(\left|\lambda^{(k)}-\lambda_{J}\right|^{3}\right)
$$

- Proof idea: If $v^{(k)}$ is close to an eigenvector, $\left\|v^{(k)}-q_{J}\right\| \leq \epsilon$, then the accurate of the Rayleigh quotient estimate $\lambda^{(k)}$ is $\left|\lambda^{(k)}-\lambda_{J}\right|=O\left(\epsilon^{2}\right)$. One step of inverse iteration then gives

$$
\left\|v^{(k+1)}-q_{J}\right\|=O\left(\left|\lambda^{(k)}-\lambda_{J}\right|\left\|v^{(k)}-q_{J}\right\|\right)=O\left(\epsilon^{3}\right)
$$

The QR Algorithm

- Remarkably simple algorithm: QR factorize and multiply in reverse order:

Algorithm: "Pure" QR Algorithm

$A^{(0)}=A$
for $k=1,2, \ldots$

$$
\begin{array}{ll}
Q^{(k)} R^{(k)}=A^{(k-1)} & \text { QR factorization of } A^{(k-1)} \\
A^{(k)}=R^{(k)} Q^{(k)} & \text { Recombine factors in reverse order }
\end{array}
$$

- With some assumptions, $A^{(k)}$ converge to a Schur form for A (diagonal if A symmetric)
- Similarity transformations of A :

$$
A^{(k)}=R^{(k)} Q^{(k)}=\left(Q^{(k)}\right)^{T} A^{(k-1)} Q^{(k)}
$$

Unnormalized Simultaneous Iteration

- To understand the QR algorithm, first consider a simpler algorithm
- Simultaneous Iteration is power iteration applied to several vectors
- Start with linearly independent $v_{1}^{(0)}, \ldots, v_{n}^{(0)}$
- We know from power iteration that $A^{k} v_{1}^{(0)}$ converges to q_{1}
- With some assumptions, the space $\left\langle A^{k} v_{1}^{(0)}, \ldots, A^{k} v_{n}^{(0)}\right\rangle$ should converge to q_{1}, \ldots, q_{n}
- Notation: Define initial matrix $V^{(0)}$ and matrix $V^{(k)}$ at step k :
$V^{(0)}=\left[v_{1}^{(0)}|\cdots| v_{n}^{(0)}\right], \quad V^{(k)}=A^{k} V^{(0)}=\left[\begin{array}{l|l|l} & \\ v_{1}^{(k)} & \cdots & \left.v_{n}^{(k)}\right]\end{array}\right.$

Unnormalized Simultaneous Iteration

- Define well-behaved basis for column space of $V^{(k)}$ by $\hat{Q}^{(k)} \hat{R}^{(k)}=V^{(k)}$
- Make the assumptions:
- The leading $n+1$ eigenvalues are distinct
- All principal leading principal submatrices of $\hat{Q}^{T} V^{(0)}$ are nonsingular, where columns of \hat{Q} are q_{1}, \ldots, q_{n}
We then have that the columns of $\hat{Q}^{(k)}$ converge to eigenvectors of A :

$$
\left\|q_{j}^{(k)}- \pm q_{j}\right\|=O\left(C^{k}\right)
$$

where $C=\max _{1 \leq k \leq n}\left|\lambda_{k+1}\right| /\left|\lambda_{k}\right|$

- Proof. Textbook / Black board

Simultaneous Iteration

- The matrices $V^{(k)}=A^{k} V^{(0)}$ are highly ill-conditioned
- Orthonormalize at each step rather than at the end:

Algorithm: Simultaneous Iteration

Pick $\hat{Q}^{(0)} \in \mathbb{R}^{m \times n}$
for $k=1,2, \ldots$

$$
Z=A \hat{Q}^{(k-1)}
$$

$$
\hat{Q}^{(k)} \hat{R}^{(k)}=Z \quad \text { Reduced QR factorization of } Z
$$

- The column spaces of $\hat{Q}^{(k)}$ and $Z^{(k)}$ are both equal to the column space of $A^{k} \hat{Q}^{(0)}$, therefore same convergence as before

Simultaneous Iteration \Longleftrightarrow QR Algorithm

- The QR algorithm is equivalent to simultaneous iteration with $\hat{Q}^{(0)}=I$
- Notation: Replace $\hat{R}^{(k)}$ by $R^{(k)}$, and $\hat{Q}^{(k)}$ by $\underline{Q}^{(k)}$

Simultaneous Iteration:

$$
\begin{aligned}
\underline{Q}^{(0)} & =I \\
Z & =A \underline{Q}^{(k-1)} \\
Z & =\underline{Q}^{(k)} R^{(k)} \\
A^{(k)} & =\left(\underline{Q}^{(k)}\right)^{T} A \underline{Q}^{(k)}
\end{aligned}
$$

$$
\begin{aligned}
\text { Unshifted QR Algorithm: } \\
\qquad \begin{aligned}
A^{(0)} & =A \\
A^{(k-1)} & =Q^{(k)} R^{(k)} \\
A^{(k)} & =R^{(k)} Q^{(k)} \\
\underline{Q}^{(k)} & =Q^{(1)} Q^{(2)} \cdots Q^{(k)}
\end{aligned}
\end{aligned}
$$

- Also define $\underline{R}^{(k)}=R^{(k)} R^{(k-1)} \cdots R^{(1)}$
- Now show that the two processes generate same sequences of matrices

Simultaneous Iteration \Longleftrightarrow QR Algorithm

- Both schemes generate the QR factorization $A^{k}=\underline{Q}^{(k)} \underline{R}^{(k)}$ and the projection $A^{(k)}=\left(\underline{Q}^{(k)}\right)^{T} A \underline{Q}^{(k)}$
- Proof. $k=0$ trivial for both algorithms.

For $k \geq 1$ with simultaneous iteration, $A^{(k)}$ is given by definition, and

$$
A^{k}=A \underline{Q}^{(k-1)} \underline{R}^{(k-1)}=\underline{Q}^{(k)} R^{(k)} \underline{R}^{(k-1)}=\underline{Q}^{(k)} \underline{R}^{(k)}
$$

For $k \geq 1$ with unshifted $\mathbf{Q R}$, we have

$$
A^{k}=A \underline{Q}^{(k-1)} \underline{R}^{(k-1)}=\underline{Q}^{(k-1)} A^{(k-1)} \underline{R}^{(k-1)}=\underline{Q}^{(k)} \underline{R}^{(k)}
$$

and

$$
A^{(k)}=\left(Q^{(k)}\right)^{T} A^{(k-1)} Q^{(k)}=\left(\underline{Q}^{(k)}\right)^{T} A \underline{Q}^{(k)}
$$

MIT OpenCourseWare
http://ocw.mit.edu
18.335J / 6.337J Introduction to Numerical Methods

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

