Floating Point Formats

Lecture 8 - Floating Point Arithmetic, The IEEE Standard

MIT 18.335J / 6.337J
Introduction to Numerical Methods

Per-Olof Persson
October 3, 2006

- Scientific notation:

- Floating point representation

$$
\pm\left(d_{0}+d_{1} \beta^{-1}+\ldots+d_{p-1} \beta^{-(p-1)}\right) \beta^{e}, \quad 0 \leq d_{i}<\beta
$$

with base β and precision p

- Exponent range $\left[e_{\min }, e_{\text {max }}\right]$
- Normalized if $d_{0} \neq 0$ (use $e=e_{\text {min }}-1$ to represent 0)

2

Special Quantities

- $\pm \infty$ is returned when an operation overflows
- $x / \pm \infty=0$ for any number $x, x / 0= \pm \infty$ for any nonzero number x
- Operations with infinity are defined as limits, e.g.

$$
4-\infty=\lim _{x \rightarrow \infty} 4-x=-\infty
$$

- NaN (Not a Number) is returned when the an operation has no well-defined finite or infinite result
- Examples: $\infty-\infty, \infty / \infty, 0 / 0, \sqrt{-1}, \mathrm{NaN} \odot x$

Denormalized Numbers

- With normalized significand there is a "gap" between 0 and $\beta^{e_{\text {min }}}$
- This can result in $x-y=0$ even though $x \neq y$, and code fragments like if $x \neq y$ then $z=1 /(x-y)$ might break
- Solution: Allow non-normalized significand when the exponent is $e_{\text {min }}$
- This gradual underflow garantees that

$$
x=y \Longleftrightarrow x-y=0
$$

IEEE Single Precision

- 1 sign bit, 8 exponent bits, 23 significand bits:

0	00000000	0000000000000000000000000000000
S	E	M

- Represented number:

$$
(-1)^{S} \times 1 . M \times 2^{E-127}
$$

- Special cases:

	$E=0$	$0<E<255$	$E=255$
$M=0$	± 0	Powers of 2	$\pm \infty$
$M \neq 0$	Denormalized	Ordinary numbers	NaN

IEEE Single Precision, Examples

S	E	M	Quantity
0	11111111	00000100000000000000000	NaN
1	11111111	00100010001001010101010	NaN
0	11111111	00000000000000000000000	∞
0	10000001	10100000000000000000000	$+1 \cdot 2^{129-127} \cdot 1.101=6.5$
0	10000000	00000000000000000000000	$+1 \cdot 2^{128-127} \cdot 1.0=2$
0	00000001	00000000000000000000000	$+1 \cdot 2^{1-127} \cdot 1.0=2^{-126}$
0	00000000	10000000000000000000000	$+1 \cdot 2^{-126} \cdot 0.1=2^{-127}$
0	00000000	00000000000000000000001	$+1 \cdot 2^{-126} \cdot 2^{-23}=2^{-149}$
0	00000000	00000000000000000000000	0
1	00000000	00000000000000000000000	-0
1	10000001	10100000000000000000000	$-1 \cdot 2^{129-127} \cdot 1.101=-6.5$
1	11111111	00000000000000000000000	$-\infty$

IEEE Floating Point Data Types

	Single precision	Double precision
Significand size (p)	24 bits	53 bits
Exponent size	8 bits	11
Total size	32 bits	64 bits
$e_{\max }$	+127	+1023
$e_{\min }$	-126	-1022
Smallest normalized	$2^{-126} \approx 10^{-38}$	$2^{-1022} \approx 10^{-308}$
Largest normalized	$2^{127} \approx 10^{38}$	$2^{1023} \approx 10^{308}$
$\epsilon_{\text {machine }}$	$2^{-24} \approx 6 \cdots 10^{-8}$	$2^{-53} \approx 10^{-16}$

Floating Point Arithmetic

- Define $\mathrm{fl}(x)$ as the closest floating point approximation to x
- By the definition of $\epsilon_{\text {machine }}$, we have for the relative error:

$$
\text { For all } x \in \mathbb{R} \text {, there exists } \epsilon \text { with }|\epsilon| \leq \epsilon_{\text {machine }}
$$

$$
\text { such that } \mathrm{fl}(x)=x(1+\epsilon)
$$

- The result of an operation \circledast using floating point numbers is $\mathrm{fl}(a \circledast b)$
- If $\mathrm{fl}(a \circledast b)$ is the nearest floating point number to $a \circledast b$, the arithmetic rounds correctly (IEEE does), which leads to the following property:

For all floating point x, y, there exists ϵ with $|\epsilon| \leq \epsilon_{\text {machine }}$ such that

$$
x \circledast y=(x * y)(1+\epsilon)
$$

- Round to nearest even in the case of ties

MIT OpenCourseWare
http://ocw.mit.edu

18.335J / 6.337J Introduction to Numerical Methods

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

