Options for solving $A x=b(m \times m)$

- If m is small $\left(<10^{4}\right)$, use LAPACK (LU, Cholesky, etc.)
- If m is moderate ($<10^{7}$), A is sparse, and A 's sparsity comes from a mesh (especially 1d or 2d), consider a sparse-direct solver (UMFPACK, etc.)
- Otherwise, if m is large and $A x$ is fast:
- if A is Hermitian positive-definite, use conjugate-gradient
- if A is Hermitian indefinite:
- if not too badly conditioned, use MINRES
- otherwise, use SYMMLQ, GMRES, or some other scheme
- if A is non-Hermitian, try several possibilities:
- GMRES if convergence is achieved in $\widetilde{<} 100$ steps (e.g. you have a good preconditioner), otherwise some flavor of restarted GMRES
- QMR (with look-ahead Lanczos)
- BiCGSTAB(ell) with ell=1,2,4,... (ell>1 is most reliable)

MIT OpenCourseWare
http://ocw.mit.edu
18.335J / 6.337J Introduction to Numerical Methods

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

