18.335 Midterm, Fall 2010

You have 2 hours.

Problem 1: SVD Stability (30 points)

Consider the problem of computing the SVD $A = U\Sigma V^*$ from a matrix A (the input).

- (a) Explain what it would mean for this computation (outputs U, Σ, and V) to be backwards stable.
- (b) Explain why this algorithm cannot be backwards stable. (Hint: think about e.g. what property the computed \tilde{U} would have to have.)
- (c) Practical SVD algorithms are, however, stable (for the general definition of stability). Write down what this means.

Problem 2: Least squares (30 points)

Suppose that we want to solve the **weighted least-squares** problem

$$\min_{x} \|B^{-1}(Ax - b)\|_2$$

where $B(m \times m)$ is a nonsingular square matrix and $A(m \times n)$ has full column rank.

- (a) Write down the equivalent of the normal equations $(A^*Ax = A^*b$ for ordinary least-squares) that the optimum *x* must satisfy. [*Reminder:* from class, $x^*Cx x^*d d^*x$ for $C = C^*$ positive-semidefinite is minimized when Cx = d.]
- (b) Give a stable way to solve this that avoids squaring the condition number of A. (Just re-express it in terms of stable algorithms considered in class. You don't have to write out the in-class parts of the algorithm, just say "_____ factorization of ____" etcetera.)

Problem 3: Eigenvalues (30 points)

(a) Recall the power method: computing x_{n+1} = Ax_n/||Ax_n|| for n = 1, 2, ..., with some random x₁, which converges to an eigenvector q₁ corresponding to the eigenvalue λ₁ with largest magnitude. (Number the eigenvalues in order |λ₁| ≥ |λ₂| ≥ ···.) Explain why |λ₁| = |λ₂| is

generally a problem for the convergence of this algorithm, but $\lambda_1 = \lambda_2$ is not a problem (assume *A* is diagonalizable).

(b) Compare and contrast the convergence properties and computational cost of the following two algorithms for computing the eigenvalue closest to μ of a *large sparse* Hermitian matrix A, where μ is in the middle of the spectrum somewhere: Lanczos for the smallest-magnitude eigenvalue of (A – μI)², or Lanczos for the largest-magnitude eigenvalue of (A – μI)⁻¹.

18.335J / 6.337J Introduction to Numerical Methods Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.