18.335 Midterm. November 3, 2004

Name:

Problem 1	
Problem 2	
Problem 3	
Problem 4	
Problem 5	
Problem 6	
Total	

In all problems, all matrices are real and square and all vectors are real.

1. (5 points) Assume (do not prove here)

 $||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}, \text{ for all } x \in \mathbf{R}^n.$

Show that for any matrix A

$$||A||_{\infty} \le \sqrt{n} ||A||_2 \le n ||A||_{\infty}.$$

- 2. (5 points) Let A be symmetric positive definite matrix with Cholesky factor C, i.e. $A = C^T C$. Show that $||A||_2 = ||C||_2^2$ and that $\kappa_2(A) = (\kappa_2(C))^2$, where $\kappa_2(X)$ is the condition number of the matrix X measured in the two-norm.
- 3. A matrix A is called strictly column diagonally dominant if $|a_{ii}| > \sum_{j \neq i} |a_{ji}|$ for all i.
 - (a) (5 points) Show that such an A is nonsingular.
 - (b) (5 points) Show that no pivoting is needed when computing A = LU. In other words, if we did do partial pivoting to compute PA = LU, P a permutation matrix, then we would get P = I. Hint: Show that after one step of Gaussian elimination, the bottom right n 1 by n 1 submatrix is also strictly column diagonally dominant.
- 4. (5 points) Let A be skew Hermitian, i.e. $A^* = -A$. Prove that the eigenvalues of A are purely imaginary and that I A is nonsingular.
- 5. (5 points) Let $\|\cdot\|$ be an operator norm. Prove that if $\|A\| < 1$ then I A is invertible.
- 6. (5 points) Let $x = (1, 2, 3, 4, 5, 6, 7)^T$ and $y = (-7.5, 2, -4, -4, 2, 3, 0.5)^T$. In double precision IEEE binary floating point arithmetic, true or false:

$$fl(x^T y) = 0$$

Explain.