18.335 Midterm. November 3, 2004

Name:

Problem 1	
Problem 2	
Problem 3	
Problem 4	
Problem 5	
Problem 6	
Total	

In all problems, all matrices are real and square and all vectors are real.

1. (5 points) Assume (do not prove here)

$$
\|x\|_{\infty} \leq\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty}, \text { for all } x \in \mathbf{R}^{n} .
$$

Show that for any matrix A

$$
\|A\|_{\infty} \leq \sqrt{n}\|A\|_{2} \leq n\|A\|_{\infty} .
$$

2. (5 points) Let A be symmetric positive definite matrix with Cholesky factor C, i.e. $A=C^{T} C$. Show that $\|A\|_{2}=\|C\|_{2}^{2}$ and that $\kappa_{2}(A)=\left(\kappa_{2}(C)\right)^{2}$, where $\kappa_{2}(X)$ is the condition number of the matrix X measured in the two-norm.
3. A matrix A is called strictly column diagonally dominant if $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{j i}\right|$ for all i.
(a) (5 points) Show that such an A is nonsingular.
(b) (5 points) Show that no pivoting is needed when computing $A=L U$. In other words, if we did do partial pivoting to compute $P A=L U, P$ a permutation matrix, then we would get $P=I$. Hint: Show that after one step of Gaussian elimination, the bottom right $n-1$ by $n-1$ submatrix is also strictly column diagonally dominant.
4. (5 points) Let A be skew Hermitian, i.e. $A^{*}=-A$. Prove that the eigenvalues of A are purely imaginary and that $I-A$ is nonsingular.
5. (5 points) Let $\|\cdot\|$ be an operator norm. Prove that if $\|A\|<1$ then $I-A$ is invertible.
6. (5 points) Let $x=(1,2,3,4,5,6,7)^{T}$ and $y=(-7.5,2,-4,-4,2,3,0.5)^{T}$. In double precision IEEE binary floating point arithmetic, true or false:

$$
\mathrm{f}\left(x^{T} y\right)=0 \text { ? }
$$

Explain.

