18.330 :: Homework 8 :: Spring 2012 :: Not due

Fourier exercises (05/15):

- 1. Show that a C^p periodic function ($p \ge 1$) has Fourier series coefficients that decay like $|k|^{-p}$.
- 2. Show that the error of the trapezoidal rule for integrating a C^p periodic function is $O(h^p)$.
- 3. Show that the L^2 error of bandlimited differentiation of a C^p periodic function is $O(h^{p-3/2})$.
- 4. Let $f(x) = \frac{1}{1+x^2}$, for which $\hat{f}(k) = \pi e^{-|k|}$. For the purpose of this exercise, assume $x \in \mathbb{R}$ and $k \in \mathbb{R}$ (no boundaries.)
 - Find the decay rate (as a function of N) of the error $||f f_N||_2$ of best approximation by a function f_N with Fourier transform supported in [-N, N].
 - Find the decay rate (as a function of *h*) of the error $||f p||_2$ or bandlimited interpolation form the samples on the grid $x_j = jh$.
 - Same question for the error of bandlimited differentiation, and the error of the trapezoidal rule.
- 5. Formulate and prove the discrete convolution theorem.

18.330 Introduction to Numerical Analysis Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.