18.330 :: Homework 7 :: Spring 2012 :: Due Thursday May 3

1. (3pts) Prove the following properties of the Fourier transform $(x, k \in \mathbb{R})$:
(a) Dilation: if $g(x)=f(x / a)$ for $a>0$, then $\hat{g}(k)=a \hat{f}(a k)$.
(b) Conjugation: if $g(x)=\bar{f}(x)$, then $\hat{g}(k)=\overline{\hat{f}}(-k)$.
(c) Symmetry: if f is real and even $(f(x)=f(-x))$, show that $\hat{f}(k)$ is also real and even.
(d) Symmetry: if f is real and odd $(f(x)=f(-x))$, show that $\hat{f}(k)$ is imaginary and odd.
2. (3pts) Consider the sinc function

$$
\operatorname{sinc}(x)=\frac{\sin x}{x} .
$$

(a) Show that sinc is not integrable, i.e. sinc $\notin L^{1}(\mathbb{R})$. [Hint: if $f(x) \geq g(x) \geq 0$ and $\int g(x) d x$ diverges, then $\int f(x) d x$ diverges as well.]
(b) Nevertheless, integrals involving sinc may make sense. From the theory of Fourier transforms, predict the value of

$$
\int_{-\infty}^{\infty} \operatorname{sinc}(x) d x
$$

3. (2pts) Consider a kernel $K(x)$, and the integral equation

$$
u(x)+\int_{-\infty}^{\infty} K(x-y) u(y) d y=f(x)
$$

Similar looking equations arise for instance in rendering in computer graphics, and in the scattering of radar waves off of planes. Find a formula for the solution $u(x)$ of the above equation, using the Fourier transform. What is the condition on $K(x)$ such that no division by zero occurs?
4. (2pts) Show that the functions

$$
v_{k}(x)=c e^{-i k x}, \quad k \in \mathbb{Z}
$$

are orthogonal over $[0,2 \pi]$, for the inner product $\langle f, g\rangle=\int_{0}^{2 \pi} f(x) \bar{g}(x) d x$. Find the value of c such that these functions are also normalized.

MIT OpenCourseWare
http://ocw.mit.edu

18.330 Introduction to Numerical Analysis

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

