18.330 :: Homework 1 :: Spring 2012 :: Due February 23

1. (3 pts) Consider the convergent series ${ }^{1}$

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots
$$

(a) Is this series absolutely convergent or conditionally convergent? Justify your answer in a rigorous fashion.
(b) Write a short program (e.g. in Matlab) to compute partial sums. How many terms are needed to obtain 3 correct digits of $\pi / 4$?
2. (3 pts) Consider the geometric series $1+x+x^{2}+x^{3}+\ldots$ and its partial sums

$$
S_{N}=\sum_{n=0}^{N} x^{n}
$$

(a) When $x \neq 1$, show by induction that

$$
S_{N}=\frac{1-x^{N+1}}{1-x}
$$

(b) While the formula above is valid for all $x \neq 1$, it only implies convergence of the geometric series to the limit $\frac{1}{1-x}$ in the case $|x|<1$. Explain why the geometric series is always divergent when $|x|>1$.
(c) Find a formula for S_{N} when $x=1$.
3. (4 pts) Consider the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{q}}
$$

(a) Show rigorously that the series converges when $q>1$, by comparing it to an integral.
(b) Show rigorously that the series diverges when $0<q<1$, by comparing it to an integral.
4. (Bonus, 1 pt. Bonus questions do not bring your score above 10/10.) It turns out that the following series converges for all real x :

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

where $n!=n \cdot(n-1) \cdot(n-2) \ldots 2 \cdot 1$ is the factorial of n. Write a program to compute the partial sum S_{N} for $x=-25$, and various values of N. How do you explain that your answer is never close to e^{-25}, regardless of how you choose N ?

[^0]MIT OpenCourseWare
http://ocw.mit.edu

18.330 Introduction to Numerical Analysis

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ It follows from the alternating series test that the series is convergent. One way to check that the limit is $\pi / 4$ is to consider the Taylor series of atan centered at $x=0$, and evaluate it at $x=1$.

