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Formulas for the Product FilterFormulas for the Product Filter
HalfbandHalfband condition:condition:

P(P(ωω) + P() + P(ωω + + ππ) = 2) = 2
Also want P(Also want P(ωω) to be ) to be lowpasslowpass
and p[n] to be symmetric.and p[n] to be symmetric.

DaubechiesDaubechies’’ ApproachApproach
Design a polynomial, P(y), of degree 2p Design a polynomial, P(y), of degree 2p -- 1, such that1, such that
P(0) = 2P(0) = 2
PP((ll))(0) = 0; (0) = 0; ll = 1, 2, = 1, 2, ……, p , p -- 11

PP((ll))(1) = 0; (1) = 0; ll = 0, 1, = 0, 1, ……, p , p -- 11~~
~~

~~

π ω0

2
P (ω) P (ω+π)

1 y0

2 P(y)~

~~
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Can achieve required flatness at y = 1 by including a Can achieve required flatness at y = 1 by including a 
term of the form (1 term of the form (1 –– y)y)pp i.e.i.e.
P(y) = 2(1 P(y) = 2(1 –– y)y)pp BBpp(y)(y)
Where BWhere Bpp(y) is a polynomial of degree p (y) is a polynomial of degree p –– 1.1.

How to choose BHow to choose Bpp(y)?(y)?
Let BLet Bpp(y) be the binomial series expansion for (y) be the binomial series expansion for 
(1 (1 –– y)y)--pp, truncated after p terms:, truncated after p terms:

BBpp(y) = 1 + (y) = 1 + pypy +                 y+                 y 22 + … +                 y+ … +                 ypp--11

= (1 = (1 –– y)y)--p p + + O(yO(ypp))

∼∼

p(p + 1)p(p + 1)
22

2p 2p -- 22
p p –– 11(  (  ))

<< Higher order termsHigher order terms
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(1 (1 –– y)y)--11 = = ∑∑ yykk

(1 (1 –– y)y)--pp = = ∑∑

∞∞

k = 0k = 0
∞∞

k = 0k = 0 (( ))kk

|| ||yy < 1< 1

ThenThen

P(y) = 2(1 P(y) = 2(1 –– y)y)pp[(1[(1--y)y)--pp + O (+ O (yypp)])]
= 2 + = 2 + O(yO(ypp))

∼∼

yykkp + k p + k ––11
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(       )(       )p + k p + k -- 11
kk yykk

(      )(      )1 1 -- eeiiωω

22 (      )(      )1 1 –– ee--iiωω

22
1 1 –– coscos ωω

22

((

∼∼ pp--11

k=0k=0

ThusThus
PP((ll))(0)  =  0  ;  (0)  =  0  ;  ll = 1, 2, = 1, 2, …… , p, p--11

So we haveSo we have

P(y)  =  2 (1P(y)  =  2 (1--y)y)pp ∑∑

Now letNow let
y =                                         maintainsy =                                         maintains symmetrysymmetry

=                                             =                                             
ThusThus

P(P(ωω)  =  P                            )  =  P                            

=  2                          =  2                          ∑∑

∼∼ 1 1 –– coscos ωω
22 ))

))((1 + 1 + coscos ωω
22

p p -- 11

k = 0k = 0
((p + k + 1p + k + 1

kk )) ((1 1 –– coscos ωω))22
kkpp
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z domain: z domain: 

P(z) = 2P(z) = 2 ))((((1 + z1 + z
22

1 + z1 + z--11))pp

22
pp

∑∑
p p -- 11

k = 0k = 0
p + k p + k -- 11(( ))kk (( ))1 1 -- zz (( ))1 1 –– zz--11

2222
kkkk
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Meyer’s ApproachMeyer’s Approach
Work with derivative of P(y):Work with derivative of P(y):

PP´́(y)  =  (y)  =  -- CC´́ yypp--11 (1 (1 ––y)y)pp--11

SoSo
P(y)   =  2 P(y)   =  2 -- CC´́∫∫ yypp--11 (1(1--y)y)pp--11 d y         (P(0) = 2)d y         (P(0) = 2)

ThenThen
P(P(ωω)   =  2 )   =  2 -- CC´́∫∫

∼∼

∼∼

∼∼∼∼ yy

00

))1 + 1 + coscos ωω((
22

pp--11(( ))1 1 –– coscos ωω
22

pp--11
sin sin ωω

22
ddωω

ωω

00

= 2 = 2 -- CC´́∫∫ (( ))1 1 –– coscos22 ωω
22

pp--11
sin sin ωω

22
ddωω

ωω

00

i.e.   P(i.e.   P(ωω)  =  2 )  =  2 –– C C ∫∫ sinsin2p2p--11 ωω d d ωω
ωω

00
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Spectral FactorizationSpectral Factorization
Recall the Recall the halfbandhalfband condition for orthogonal filters:condition for orthogonal filters:
z domain:z domain:

HH00(z) H(z) H00(z(z--11)  +  H)  +  H00((--z) Hz) H00((--zz--11)  =  2)  =  2
Frequency domain:Frequency domain:

HH00((ωω) ) 2 2 +  +  HH00((ωω + + ππ) ) 2 2 =  2=  2
The product filter for the orthogonal case isThe product filter for the orthogonal case is

P(z)  =  HP(z)  =  H00(z) H(z) H00(z(z--11))
P(P(ωω) = ) = HH00((ωω))22 ⇒⇒ P(P(ωω) ) ≥≥ 00
p[n]  =  hp[n]  =  h00[n] [n] ∗∗ hh00[[--n]            n]            ⇒⇒ p[n] = p[p[n] = p[--n]n]

The spectral factorization problem is the problem The spectral factorization problem is the problem 
of finding Hof finding H00(z) once P(z) is known.(z) once P(z) is known.



99

Consider the distribution of the zeros (roots) of P(z).Consider the distribution of the zeros (roots) of P(z).

•• Symmetry of p[n]  Symmetry of p[n]  ⇒⇒ P(z)  =  P(zP(z)  =  P(z--11))
If zIf z00 is a root then so is zis a root then so is z00

--11..
•• If p[n] are real, then the roots appear in complex, If p[n] are real, then the roots appear in complex, 

conjugate pairs.conjugate pairs.

(1 (1 –– zz00 zz--11)(1 )(1 –– zz00*z*z--11)  =  1 )  =  1 –– (z(z00 + z+ z00*) z*) z--11 + (z+ (z00zz00*)z*)z--22
123123 123123

realreal realreal
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ImIm ImIm

zz00

zz00
11 ReRe ReRe11 1/z1/z00zz00

O O 11zz00

OO 11
zz00**

**

Complex zerosComplex zeros Real zerosReal zeros

If the zero zIf the zero z00 is grouped into the spectral factor His grouped into the spectral factor H00(z), (z), 
then the zero 1/zthen the zero 1/z0 0 must be grouped into Hmust be grouped into H00(z(z--11).).

⇒⇒ hh00[n]  cannot be symmetric.[n]  cannot be symmetric.
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DaubechiesDaubechies’ choice:  Choose H’ choice:  Choose H00(z) such that(z) such that
(i)(i) all its zeros are inside or on the unit circle.all its zeros are inside or on the unit circle.
(ii)(ii) it is causal.it is causal.
i.e.  Hi.e.  H00(z) is a minimum phase filter.(z) is a minimum phase filter.

Example:Example:

66 33 33
==

00
..

P(z)P(z) HH00(z)(z)
(Minimum phase)(Minimum phase)

HH00(z(z--11))
(Maximum phase)(Maximum phase)
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Practical Algorithms:Practical Algorithms:
1.1. Direct Method: compute the roots of P(z) Direct Method: compute the roots of P(z) 

numerically.numerically.
2.2. CepstralCepstral Method:Method:

First factor out the zeros which lie on the unit First factor out the zeros which lie on the unit 
circlecircle

P(z)  =  [(1 + zP(z)  =  [(1 + z--11)(1 + z)])(1 + z)]pp Q(z)Q(z)
Now we need to factor Q(z) into R(z) R(zNow we need to factor Q(z) into R(z) R(z--11) such that) such that
i.i. R(z) has all its zeros inside the unit circle.R(z) has all its zeros inside the unit circle.
ii.ii. R(z) is causal.R(z) is causal.
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Then use logarithms to change multiplication into Then use logarithms to change multiplication into 
addition:addition:

Q(z)     =         R(z)      Q(z)     =         R(z)      •• R(R(zz--11))
lnln Q(z)    =     Q(z)    =     lnln R(z)     +     R(z)     +     lnln R(zR(z--11) ) 
123123 123123 123123

Q(z)Q(z) R(z)R(z) R(zR(z--11))^̂ ^̂^̂

Take inverse z transforms:Take inverse z transforms:

q[n]     =      r[n]           +    r[q[n]     =      r[n]           +    r[--n]n]

Complex Complex cepstrumcepstrum
of q[n]of q[n]

^̂ ^̂ ^̂
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Example:Example:

XX55 XX
55

XX

XX

R(z) has all its zeros and all its poles inside the unit R(z) has all its zeros and all its poles inside the unit 

circle, so R(z) has all its singularities inside the unit circle, so R(z) has all its singularities inside the unit 

circle.  (circle.  (ln0  =  ln0  =  -- ∞∞ ,  ,  lnln ∞∞ =  =  ∞∞ .)  .)  

^̂

R(z)R(z) R(z) = R(z) = lnln R(z)R(z)^̂
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All singularities inside the unit circle leads to a causal All singularities inside the unit circle leads to a causal 
sequence, e.g.sequence, e.g.

X(z)  =  X(z)  =  11
11-- zzkk zz--11 Pole at z = Pole at z = zzkk

X(X(ωω) =) =
11

11-- zzkk ??--iiωω

If If ||zzkk| < 1,  we can write| < 1,  we can write
X(X(ωω)  =  )  =  ∑∑ ((zzkk))nn ee--iiωωnn

⇒⇒x[n] is causalx[n] is causal
So r[n] is the causal part of q[n]:So r[n] is the causal part of q[n]:

∞∞

n = 0n = 0

^̂ ^̂

r[n]  =r[n]  =

6
7

8
6

7
8 ½½ q[0]    ;    n  =  0q[0]    ;    n  =  0

q[n]        ;    n  >  0q[n]        ;    n  >  0
0             ;    n  <  00             ;    n  <  0
^̂

^̂ 6
7

8
6

7
8^̂
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Algorithm:Algorithm:
Given the coefficients q[n] of the polynomial Q(z):Given the coefficients q[n] of the polynomial Q(z):
i.i. Compute the MCompute the M--point DFT of q[n] for a point DFT of q[n] for a 

sufficiently large M.sufficiently large M.

Q[k]  =  Q[k]  =  ∑∑ q[n]e             q[n]e             ;    0 ;    0 ≤≤ k k < M< M

ii.ii. Take the logarithm.Take the logarithm.
Q[k]  =  Q[k]  =  lnln (Q[k])(Q[k])

iii.iii. Determine the complex Determine the complex cepstrumcepstrum of q[n] by of q[n] by 
computing the IDFT.computing the IDFT.
q[n]q[n] =           =           ∑∑ Q[k] Q[k] eeii

nn

^̂

1 1 
MM

^̂ MM
22ππ nknk^̂M M -- 11

k = 0k = 0

--ii MM
22ππknkn
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iv.iv. Find the causal part of q[n].Find the causal part of q[n].

v.v. Determine the DFT of r[n] by computing the Determine the DFT of r[n] by computing the 
exponent of the DFT of r[n].exponent of the DFT of r[n].

R[k]  =  exp (R[k])  =  exp ( R[k]  =  exp (R[k])  =  exp ( ∑∑ r[n]er[n]e––i      i      knkn)) ; 0 ; 0 ≤≤ k k < M< M

^̂

r[n]  =r[n]  =

6
7

8
6

7
8 ½½ q[0]    ;    n  =  0q[0]    ;    n  =  0

q[n]        ;    n  >  0q[n]        ;    n  >  0
0             ;    n  <  00             ;    n  <  0
^̂

^̂ 6
7

8
6

7
8^̂

^̂

MM--11

k = 0k = 0
^̂ MM

^̂ 22ππ
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vi.vi. Determine the DFT of hDetermine the DFT of h00[n], by including half the [n], by including half the 
zeros at z = zeros at z = --1.1.
HH00[k]  =  R[k] (1 + e[k]  =  R[k] (1 + e––i                    i                    

vii.vii. Compute the IDFT to get hCompute the IDFT to get h00[n].[n].

hh00[n]  =      [n]  =      ∑∑ HH00[k] [k] eeii

MM
22ππ kk))pp

11
MM MM

22ππ nknkMM--11

k = 0k = 0


