Course 18.327 and 1.130 Wavelets and Filter Banks

Maxflat Filters: Daubechies and Meyer Formulas. Spectral Factorization

Formulas for the Product Filter

 Halfband condition:$$
P(\omega)+P(\omega+\pi)=2
$$

Also want $P(\omega)$ to be lowpass and $\mathrm{p}[\mathrm{n}]$ to be symmetric.

Daubechies' Approach
Design a polynomial, $\tilde{\mathrm{P}}(\mathrm{y})$, of degree $2 \mathrm{p}-1$, such that $P(0)=2$
$\tilde{P}^{(l)}(0)=0 ; I=1,2, \ldots, p-1$
$\tilde{p}^{(1)}(1)=0 ; I=0,1, \ldots, p-1$

Can achieve required flatness at $\mathrm{y}=1$ by including a term of the form $(1-y)^{p}$ i.e.
$\widetilde{\mathrm{P}}(\mathrm{y})=2(1-\mathrm{y})^{\mathrm{p}} \mathrm{B}_{\mathrm{p}}(\mathrm{y})$
Where $B_{p}(y)$ is a polynomial of degree $p-1$.

How to choose $\mathrm{B}_{\mathrm{p}}(\mathrm{y})$?
Let $B_{p}(y)$ be the binomial series expansion for ($1-y)^{-p}$, truncated after p terms:

$$
\begin{aligned}
B_{p}(y) & =1+p y+\frac{p(p+1)}{2} y^{2}+\ldots+\binom{2 p-2}{p-1} y^{p-1} \\
& =(1-y)^{-p}+O\left(y^{p}\right)
\end{aligned}
$$

< Higher order terms

$$
\begin{aligned}
(1-y)^{-1} & =\sum_{k=0}^{\infty} y^{k} \\
(1-y)^{-p} & =\sum_{k=0}^{\infty}\left(p+k_{k}-1\right) y^{k} \\
|y| & <1
\end{aligned}
$$

Then

$$
\begin{aligned}
\widetilde{P}(y) & =2(1-y)^{p}\left[(1-y)^{-p}+O\left(y^{p}\right)\right] \\
& =2+O\left(y^{p}\right)
\end{aligned}
$$

Thus

$$
P^{(I)}(0)=0 ; 1=1,2, \ldots, p-1
$$

So we have

$$
\tilde{P}(y)=2(1-y)^{p} \sum_{k=0}^{p-1}\left(p+\frac{k}{k}-1\right) y^{k}
$$

Now let

$$
\begin{aligned}
y & =\left(\frac{1-e^{i \omega}}{2}\right)\left(\frac{1-e^{-i \omega}}{2}\right) \text { maintains symmetry } \\
& =\frac{1-\cos \omega}{2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
P(\omega) & =\tilde{P}\left(\frac{1-\cos \omega}{2}\right) \\
& =2\left(\frac{1+\cos \omega}{2}\right)^{p} \sum_{k=0}^{p-1}\left(p+k_{k}^{k}+1\right)\left(\frac{1-\cos \omega}{2}\right)^{k}
\end{aligned}
$$

z domain:

$$
P(z)=2\left(\frac{1+z}{2}\right)^{p}\left(\frac{1+z^{-1}}{2}\right)^{p} \sum_{k=0}^{p-1}(p+k-1)\left(\frac{1-z}{2}\right)^{k}\left(\frac{1-z^{-1}}{2}\right)^{k}
$$

Meyer's Approach

Work with derivative of $\tilde{P}(y)$:

$$
\begin{aligned}
& \tilde{P}^{\prime}(y)=-C^{\prime} y^{p-1}(1-y)^{p-1} \\
& S_{0}(y)=2-C_{0}^{\prime} \int_{0}^{y} y^{p-1}(1-y)^{p-1} d y \quad(\widetilde{P}(0)=2)
\end{aligned}
$$

Then
$P(\omega)=2-C^{-} \int_{0}^{\omega}\left(\frac{1-\cos \omega}{2}\right)^{p-1}\left(\frac{1+\cos \omega}{2}\right)^{p-1} \frac{\sin \omega}{2} d \omega$

$$
=2-C_{0}^{\infty} \int_{0}^{\omega}\left(\frac{1-\cos ^{2} \omega}{2}\right)^{p-1} \frac{\sin \omega}{2} d \omega
$$

i.e. $P(\omega)=2-C \int_{0}^{\omega} \sin ^{2 p-1} \omega d \omega$

Spectral Factorization

Recall the halifband condition for orthogonal filters:
z domain:

$$
H_{0}(z) H_{0}\left(z^{-1}\right)+H_{0}(-z) H_{0}\left(-z^{-1}\right)=2
$$

Frequency domain:

$$
\left|H_{0}(\omega)\right|^{2}+\left|H_{0}(\omega+\pi)\right|^{2}=2
$$

The product filter for the orthogonal case is

$$
\begin{array}{ll}
P(z)=H_{0}(z) H_{0}\left(z^{-1}\right) & \\
P(\omega)=\left|H_{0}(\omega)\right|^{2} & \Rightarrow P(\omega) \geq 0 \\
p[n]=h_{0}[n] * h_{0}[-n] & \Rightarrow p[n]=p[-n]
\end{array}
$$

The spectral factorization problem is the problem of finding $\mathrm{H}_{0}(\mathrm{z})$ once $\mathrm{P}(\mathrm{z})$ is known.

Consider the distribution of the zeros (roots) of $\mathrm{P}(\mathrm{z})$.

- Symmetry of $p[n] \Rightarrow P(z)=P\left(z^{-1}\right)$ If z_{0} is a root then so is $z_{0}{ }^{-1}$.
- If $p[n]$ are real, then the roots appear in complex, conjugate pairs.

$$
\left(1-z_{0} z^{-1}\right)\left(1-z_{0}{ }^{*} z^{-1}\right)=1-\left(\underset{\text { real }}{\left(z_{p} z_{G} z_{i}^{*}\right) z^{-1}}+\underset{\text { real }}{\left(z_{p} z_{0} z_{0}^{*}\right) z^{-2}}\right.
$$

Complex zeros

Real zeros

If the zero z_{0} is grouped into the spectral factor $H_{0}(z)$, then the zero $1 / \mathbf{z}_{0}$ must be grouped into $\mathrm{H}_{0}\left(\mathbf{z}^{-1}\right)$. $\Rightarrow \mathbf{h}_{0}[\mathrm{n}]$ cannot be symmetric.

Daubechies' choice: Choose $\mathrm{H}_{0}(\mathrm{z})$ such that (i) all its zeros are inside or on the unit circle.
(ii) it is causal.
i.e. $\mathrm{H}_{0}(\mathrm{z})$ is a minimum phase filter.

Example:

(Minimum phase) (Maximum phase)

Practical Algorithms:

1. Direct Method: compute the roots of $\mathrm{P}(\mathbf{z})$ numerically.
2. Cepstral Method:

First factor out the zeros which lie on the unit circle

$$
P(z)=\left[\left(1+z^{-1}\right)(1+z)\right]^{p} Q(z)
$$

Now we need to factor $\mathbf{Q}(\mathbf{z})$ into $\mathbf{R}(\mathbf{z}) \mathbf{R}\left(\mathbf{z}^{-1}\right)$ such that
i. $\quad \mathrm{R}(\mathrm{z})$ has all its zeros inside the unit circle.
if. $R(z)$ is causal.

Then use logarithms to change multiplication into addition:

$$
\begin{array}{rlrl}
\mathbf{Q}(\mathbf{z}) & = & \mathbf{R}(\mathbf{z}) & \cdot \\
\ln \left(\mathbf{z}^{-1}\right) \\
\ln (\mathbf{z}) & =\ln \boldsymbol{R}(\mathbf{z}) & +\ln \sum^{\left(z^{-1}\right)} \\
\hat{\mathbf{Q}}(\mathbf{z}) & & \hat{\mathbf{R}}(\mathbf{z}) & \hat{\mathbf{R}}\left(\mathbf{z}^{-1}\right)
\end{array}
$$

Take inverse z transforms:

$$
\hat{\mathrm{a}}[\mathrm{n}]=\hat{\mathrm{r}}[\mathrm{n}] \quad+\hat{\mathrm{r}}[-\mathrm{n}]
$$

Complex cepstrum of $\mathrm{q}[\mathrm{n}]$

Example:

$\mathbf{R}(\mathbf{z})$ has all its zeros and all its poles inside the unit circle, so $\hat{\mathbf{R}}(\mathrm{z})$ has all its singularities inside the unit circle. ($\ln 0=-\infty, \ln \infty=\infty$.)

All singularities inside the unit circle leads to a causal sequence, e.g.
$X(z)=\frac{1}{1-z_{k} z^{-1}} \quad$ Pole at $z=z_{k}$
$X(\omega)=\frac{1}{1-z_{k} ?^{2-i \omega}}$
If $\left|z_{k}\right|<1$, we can write
$X(\omega)=\sum_{n=0}^{\infty}\left(z_{k}\right)^{n} \mathbf{e}^{-i \omega n}$
$\Rightarrow X[n]$ is causal
So $\hat{[}[n]$ is the causal part of $\hat{q}[n]$:

Algorithm:

Given the coefficients $q[n]$ of the polynomial $\mathbf{Q}(z)$:
i. Compute the M-point DFT of q[n] for a sufficiently large M.

$$
Q[k]=\sum_{n} q[n] e^{-i \frac{2 \pi k n}{W}} \quad ; \quad 0 \leq k<M
$$

if. Take the logarithm.
$\hat{Q}[k]=\ln (Q[k])$
iii. Determine the complex cepstrum of $q[n]$ by computing the IDFT.

$$
\hat{q}[n]=\frac{1}{M} \sum_{k=0}^{M-1} \hat{Q}[k] e^{i \frac{2 \pi n k}{M}}
$$

iv. Find the causal part of $\mathrm{q}[\mathrm{n}]$.
v. Determine the DFT of $\mathrm{r}[\mathrm{n}]$ by computing the exponent of the DFT of $\hat{\mathrm{r}} \mathrm{n}]$.

$$
R[k]=\exp (\hat{R}[k])=\exp \left(\sum_{k=0}^{M-1} \hat{r}[n] e^{-i \frac{2 \pi}{M} k n}\right) ; 0 \leq k<M
$$

vi. Determine the DFT of $h_{0}[\mathrm{n}]$, by including half the zeros at $\mathbf{z = - 1}$.

$$
H_{0}[k]=R[k]\left(1+e^{-i \frac{2 \pi k}{m}}\right) p
$$

vii. Compute the IDFT to get $h_{0}[n]$.

$$
h_{0}[n]=\frac{1}{m} \sum_{k=0}^{m-1} H_{0}[k] e^{\frac{2 \pi}{m} n k}
$$

