Course 18.327 and 1.130 Wavelets and Filter Banks

Filter Banks (contd.): perfect reconstruction; halfband filters and possible factorizations.

Product Filter

Example: Product filter of degree 6

- $P_0(z) = \frac{1}{16} (-1 + 9z^{-2} + 16z^{-3} + 9z^{-4} z^{-6})$
- $P_0(z) P_0(-z) = 2z^{-3}$

⇒ Expect perfect reconstruction with a 3 sample delay Centered form:

 $P(z) = z^{3}P_{0}(z) = \frac{1}{16}(-z^{3} + 9z + 16 + 9z^{-1} - z^{-3})$

P(z) + P(-z) = 2 i.e. even part of P(z) = const

In the frequency domain:

P(ω) + **P(** ω + π **)** = 2 Halfband Condition

 $P(\omega)$ is said to be a halfband filter.

How do we factor $P_0(z)$ into $H_0(z) F_0(z)$? $P_0(z) = 1/16(1 + z^{-1})^4(-1 + 4z^{-1} - z^{-2})$ $= -1/16(1 + z^{-1})^4(2 + \sqrt{3} - z^{-1})(2 - \sqrt{3} - z^{-1})$

Some possible factorizations

	H ₀ (z) (or F ₀ (z))	$F_0(z)$ (or $H_0(z)$)
(a) (b) (c) (d) (e) (f) (g)	1 $\frac{1}{\frac{1}{2}(1 + z^{-1})}$ $\frac{1}{\frac{1}{2}(1 + z^{-1})^{2}}$ $\frac{1}{\frac{1}{2}(1 + z^{-1})(2 + \sqrt{3} - z^{-1})}$ $\frac{1}{\frac{1}{2}(1 + z^{-1})^{3}}$ $\frac{(\sqrt{3} - 1)}{4\sqrt{2}}$ (1 + z^{-1})^{2}(2 + \sqrt{3} - z^{-1}) $\frac{4\sqrt{2}}{\frac{1}{16}(1 + z^{-1})^{4}}$	$\begin{array}{l} -1/16(1+z^{-1})^4(2+\sqrt{3}-z^{-1})(2-\sqrt{3}-z^{-1})\\ -1/8(1+z^{-1})^3(2+\sqrt{3}-z^{-1})(2-\sqrt{3}-z^{-1})\\ -1/4(1+z^{-1})^2(2+\sqrt{3}-z^{-1})(2-\sqrt{3}-z^{-1})\\ -1/8(1+z^{-1})^3(2-\sqrt{3}-z^{-1})\\ -1/2(1+z^{-1})(2+\sqrt{3}-z^{-1})(2-\sqrt{3}-z^{-1})\\ -\frac{\sqrt{2}}{4(\sqrt{3}-1)}(1+z^{-1})^2(2-\sqrt{3}-z^{-1})\\ -(2+\sqrt{3}-z^{-1})(2-\sqrt{3}-z^{-1})\end{array}$

filter length = 2
1/2{ 1, 1 }

filter length = 6 ¹/₈ {-1, 1, 8, 8, 1, -1}

Case (c) -- Symmetric filters (linear phase)

General form of product filter (to be derived later):

$$P(z) = 2\left(\frac{1+z}{2}\right)^{p} \left(\frac{1+z^{-1}}{2}\right)^{p} \sum_{k=0}^{p-1} {p+k-1 \choose k} \left(\frac{1-z}{2}\right)^{k} \left(\frac{1-z^{-1}}{2}\right)^{k}$$

 $P_0(z) = z^{-(2p-1)} P(z)$

 $= (1 + z^{-1})^{2p} \frac{1}{2^{2p-1}} \sum_{k=0}^{p-1} (p+k-1)(-1)^{k} z^{-(p-1)+k} (\frac{1-z^{-1}}{2})^{2k}$ 1 2 3 1 4 4 4 4 4 4 4 4 4 4 4 4 4 3 Binomial Q(z) (spline) Cancels all odd powers filter except $z^{-(2p-1)}$

 $P_0(z)$ has 2p zeros at π (important for stability of iterated filter bank.) Q(z) factor is needed to ensure perfect reconstruction.

9

p = 1

 $P_0(z)$ has degree 2 \rightarrow leads to Haar filter bank.

 $1, 1, 1, 1 + \frac{1+z^{1}}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1+z^{1}}{2} + \frac{1+z^{1}}{$

 $F_0(z) = 1 + z^{-1}, H_0(z) = \frac{1 + z^{-1}}{2}$

Synthesis lowpass filter has 1 zero at π

→ Leads to cancellation of constant signals in analysis highpass channel.

Additional zeros at π would lead to cancellation of higher order polynomials.

Common factorizations (p = 4): (a) 9/7

Known in Matlab as bior4.4

(b) 8/8 (Daubechies 8) -- Known in Matlab as db4

Why choose a particular factorization? Consider the example with p = 2:

 One of the factors is halfband The trivial 1/8 factorization is generally not desirable, since each factor should have at least one zero at π. However, the fact that F₀(z) is halfband is interesting in itself.

$$\frac{V(z)}{2} \xrightarrow{\chi(z)} F_0(z) \xrightarrow{Y(z)}$$

Let $F_0(z)$ be centered, for convenience. Then $F_0(z) = 1 + odd$ powers of z Now

 $X(z) = V(z^2) = even powers of z only$

So

$Y(z) = F_0(z) X(z)$ = X(z) + odd powers $y[n] = \bigcup_{\substack{0 \\ 0 \\ k \text{ odd}}} x[n] \qquad ; n \text{ even}$

x[n] \Rightarrow f₀[n] is an interpolating filter Another example: $f_0[n] = \frac{\sin(\frac{\pi}{2})}{\pi n}$ -2 (ideal bandlimited 2 $\left(\right)$ Δ n y[n] interpolating filter) 2 $\left(\right)$ 4 n 16 ii. Linear phase factorization e.g. 2/6, 5/3 Symmetric (or antisymmetric) filters are desirable for many applications, such as image processing. All frequencies in the signal are delayed by the same amount i.e. there is no phase distortion.

h[n] linear phase
$$\Rightarrow$$
 A(ω)e^{-i($\omega \alpha + \theta$)}
real delays all 0 if symmetric
frequencies $\frac{\pi}{2}$ if antisymmetric
by α samples 2

Linear phase may not necessarily be the best choice for audio applications due to preringing effects.

iii. Orthogonal factorization

This leads to a minimum phase filter and a maximum phase filter, which may be a better choice for applications such as audio. The orthogonal factorization leads to the Daubechies family of wavelets – a particularly neat and interesting case. 4/4 factorization:

 $\begin{aligned} \mathsf{H}_{0}(\mathbf{z}) &= \frac{\sqrt{3} - 1}{4\sqrt{2}} \left(1 + \mathbf{z}^{-1} \right)^{2} \left[(2 + \sqrt{3}) - \mathbf{z}^{-1} \right] \\ &= \frac{1}{4\sqrt{2}} \left\{ (1 + \sqrt{3}) + (3 + \sqrt{3})\mathbf{z}^{-1} + (3 - \sqrt{3})\mathbf{z}^{-2} + (1 - \sqrt{3})\mathbf{z}^{-3} \right\} \\ \mathsf{F}_{0}(\mathbf{z}) &= \frac{-\sqrt{2}}{4(\sqrt{3} - 1)} \left(1 + \mathbf{z}^{-1} \right)^{2} \left[(2 - \sqrt{3}) - \mathbf{z}^{-1} \right] \\ &= \frac{\sqrt{3} - 1}{4\sqrt{2}} \mathbf{z}^{-3} \left(1 + \mathbf{z}^{2} \right) \left[(2 + \sqrt{3}) - \mathbf{z} \right] \\ &= \mathbf{z}^{-3} \, \mathsf{H}_{0} \left(\mathbf{z}^{-1} \right) \end{aligned}$

 $P(z) = z^{I}P_{0}(z)$ = H₀(z) H₀(z⁻¹) From alias cancellation condition: H₁(z) = F₀(-z) = -z⁻³ H₀(-z⁻¹) F₁(z) = -H₀(-z) = z⁻³ H₁(z⁻¹) **Special Case: Orthogonal Filter Banks**

Choose H₁(z) so that

$$H_1(z) = -z^{-N} H_0(-z^{-1})$$

N odd

Time domain

$$h_1[n] = (-1)^n h_0[N - n]$$

 $\begin{array}{l} F_0(z) = H_1(-z) = z^{-N} H_0(z^{-1}) \\ \Rightarrow \quad f_0[n] = h_0[N - n] \\ F_1(z) = - H_0(-z) = z^{-N} H_1(z^{-1}) \\ \Rightarrow f_1[n] = h_1[N - n] \\ \end{array}$ So the synthesis filters, $f_k[n]$, are just the time-reversed versions of the analysis filters, $h_k[n]$, with a delay.

Why is the Daubechies factorization orthogonal? Consider the centered form of the filter bank:

In matrix form:

Analysis

Synthesis

So

 $\mathbf{x} = \mathbf{W}^{\mathsf{T}}\mathbf{W}\mathbf{x}$ for any \mathbf{x}

$W^{\mathsf{T}}W = \mathbf{I} = WW^{\mathsf{T}}$

An important fact: symmetry prevents orthogonality

Matlab Example 2

1. Product filter examples

Degree-2 (p=1): pole-zero plot

Degree-2 (p=1): Freq. response

Degree-6 (p=2): pole-zero plot

Degree-6 (p=2): Freq. response

Degree-10 (p=3): pole-zero plot

Degree-10 (p=3): Freq. response

Degree-14 (p=4): pole-zero plot

Degree-14 (p=4): Freq. response

