Simple Linear Interpolation

$$
\begin{aligned}
& \left(u_{k_{0}}+u_{k_{1}} z^{-2}+u_{k_{2}} z^{-4}\right) \times\left(\frac{1}{2} z+1+\frac{1}{2} z^{-1}\right)= \\
& \quad \frac{1}{2} u_{k_{0}} z+u_{k_{0}}+\frac{1}{2}\left(u_{k_{0}}+u_{k_{1}}\right) z^{-1}+u_{k_{1}} z^{-2}+\frac{1}{2}\left(u_{k_{1}}+u_{k_{2}}\right) z^{-3}+u_{k_{2}} z^{-4}+\frac{1}{2} u_{k_{2}} z^{-5} \\
& \text { Unchanged }
\end{aligned}
$$

Interpolating Subdivision Schemes

- Given a set of data $\left\{u_{j, k_{0}}, u_{j, k_{1}}, \ldots, u_{j, k_{N}}\right\}$, find filters $h_{j}[k, m]$ such that:

$$
\left.\begin{array}{rl}
u_{j+1, k} & =u_{j, k} \\
u_{j+1, m} & =\sum_{k \in N(j, m)} h_{j}[k, m] u_{j, k}
\end{array}\right\} \underline{u}_{j+1}=\mathbf{S} \underline{u}_{j}
$$

- e.g. two point (linear) scheme

four point (cubic) scheme

$$
u_{j+1, m_{i}}=\frac{1}{16}\left(-u_{j, k_{i-1}}+9 u_{j, k_{i}}+9 u_{j, k_{i+1}}-u_{j, k_{i+2}}\right)^{2}
$$

- Generalizes easily to multiple dimensions, non-uniformly spaced points, boundaries, etc.

Interpolating Subdivision Schemes

- Limit curve is an interpolating function

Wavelets From Subdivision

- Limit curves can be used to interpolate data.

On coarse grid
$\mathcal{K}(j)=\left\{k_{0}, k_{1}, \ldots\right\}$

$$
f_{j}(x)=\sum_{k \in \mathcal{K}(j)} u_{j, k} \varphi_{j, k}(x)
$$

On fine grid

$$
\mathcal{K}(j+1)=\left\{k_{0}, m_{0}, k_{1}, \ldots\right\}
$$

$$
f_{j+1}(x)=\sum_{l \in \mathcal{K}(j+1)} u_{j+1, l} \varphi_{j+1, l}(x)
$$

Suppose that $u_{j+1, l}$ is coarsened by subsampling

$$
u_{j, k}=u_{j+1, k}
$$

and remaining data is predicted using subdivision

$$
u_{j, m}=u_{j+1, m}-\sum_{k \in N(j, m)} h_{j}[k, m] u_{j, k}
$$

Wavelets From Subdivision

- Does this fit the wavelet framework?

$$
\begin{aligned}
f_{j+1}(x) & =\sum_{l \in \mathcal{K}(j+1)} u_{j+1, l} \varphi_{j+1, l}(x) \quad \text { fine approximation } \\
& =\underbrace{\sum_{k \in \mathcal{K}(j)} u_{j, k} \varphi_{j, k}(x)}_{\text {coarse approximation }}+\underbrace{\sum_{m \in \mathcal{M}(j)} u_{j, m} w_{j, m}(x)}_{\text {details }}
\end{aligned}
$$

If we set $u_{j, k}=0, u_{j, m}=\delta_{m, m^{\prime}}$, our coarsening/prediction strategy gives

$$
\begin{aligned}
u_{j+1, k} & =u_{j, k} \\
u_{j+1, m} & =u_{j, m}+\sum_{k \in N(j, m)} h_{j}[k, m] u_{j, k}
\end{aligned}=0
$$

So the "wavelets" are

$$
w_{j, m}(x)=\varphi_{j+1, m}(x)
$$

Wavelets From Subdivision

- Similarly, setting $u_{j, k}=\delta_{k, k^{\prime}}, u_{j, m}=0$

$$
\begin{aligned}
u_{j+1, k} & =u_{j, k} \\
u_{j+1, m} & =\sum_{k \in N(j, m)} h_{j}[k, m] u_{j, k}
\end{aligned}=\delta_{k, k^{\prime}}
$$

produces the refinement equation:

$$
\varphi_{j, k}(x)=\varphi_{j+1, k}(x)+\sum_{m \in n(j, k)} h_{j}[k, m] \varphi_{j+1, m}(x)
$$

Wavelets From Subdivision

- So subdivision schemes naturally lead to hierarchical bases

Wavelets From Subdivision

- The coarsening strategy $u_{j, k}=u_{j+1, k}$ is generally less than ideal - some smoothing (antialiasing) desirable

Accomplished by forcing the wavelet to have one or more vanishing moments

$$
\int w_{j, m}(x) x^{k} d x=0, k=0,1, \cdots, p-1
$$

Larger p means smaller coefficients $u_{j, m}$ in wavelet series

$$
f(x)=\sum_{k \in \mathcal{K}(j)} u_{j, k} \varphi_{j, k}(x)+\sum_{j=0}^{\infty} \sum_{m \in \mathcal{M}(j)} u_{j, m} w_{j, m}(x)
$$

$$
u_{j, m} \sim h_{j}^{p} f^{(p)}\left(x_{m}\right)
$$

Wavelets From Subdivision

- How to improve wavelets using lifting

$$
\begin{aligned}
& w_{j, m}^{n e w}(x)=w_{j, m}(x)-\sum_{k \in \mathcal{K}(j)} s_{j}[k, m) \varphi_{j, k}(x) \\
& \varphi_{j, k}(x) \text { as before }
\end{aligned}
$$

Choose $s_{j}[k, m]$ to make the moments zero.

- Regardless of the choice for $s_{j}[k, m], \varphi_{j, k}(x)$ and $w_{j, m}^{n e w}(x)$ are orthogonal to the dual functions

$$
\begin{aligned}
\tilde{w}_{j, m}^{n e w}(x) & =\tilde{\varphi}_{j+1, m}^{n e w}(x)-\sum_{k \in N(j, m)} h_{j}[k, m] \tilde{\varphi}_{j+1, k}^{n e w}(x) \\
\tilde{\varphi}_{j, k}^{\text {new }}(x) & =\tilde{\varphi}_{j+1, k}^{\text {new }}(x)+\sum_{m \in \mathcal{M}(j)} s_{j}[k, m] \tilde{w}_{j, m}^{n e w}(x)
\end{aligned}
$$

from which we obtain an improved coarsening strategy:
$u_{j, m}=u_{j+1, m}-\sum_{k \in N(j, m)} h_{j}[k, m] u_{j+1, k} \quad$ Predict as before

$$
u_{j, k}=u_{j+1, k}+\sum_{m \in \mathcal{M}(j)} s_{j}[k, m] u_{j, m} \quad \text { Then update }
$$

Butterfly Subdivision

Loop Subdivision

Finite Elements From Subdivision

- Key difference: subdivision mask is varied so that prediction operation is confined within an element

- Limit functions are finite element shape functions

Finite Elements From Subdivision

Finite Element generated from vector subdivision piecewise polynomial, but lacks smoothness at element boundaries

Smoother vector subdivision schemes also possible

Vector Refinement

- e.g. vector refinement relation for Hermite interpolation functions

$$
\begin{gathered}
\left\{\begin{array}{c}
\varphi_{j, k}^{u}(x) \\
\varphi_{j, k}^{\theta}(x)
\end{array}\right\}=\left\{\begin{array}{c}
\varphi_{j+1, k}^{u}(x) \\
\varphi_{j+1, k}^{\theta}(x)
\end{array}\right\}+\sum_{m \in n(j, k)} \mathbf{H}_{j}[k, m]\left\{\begin{array}{c}
\varphi_{j+1, m}^{u}(x) \\
\varphi_{j+1, m}^{\theta}(x)
\end{array}\right\} \\
\mathbf{H}_{j}[k, m]=\left[\begin{array}{cc}
\varphi_{k}^{u}\left(x_{m}\right) & \frac{d \varphi_{k}^{u}\left(x_{m}\right)}{d x} \\
\varphi_{k}^{\theta}\left(x_{m}\right) & \frac{d \varphi_{k}^{\theta}\left(x_{m}\right)}{d x}
\end{array}\right] \\
\text { Cubic subdivision for displacements and rotations }
\end{gathered}
$$

- Wavelets

$$
\left.\left\{\begin{array}{c}
w_{j, m}^{u}(x) \\
w_{j, m}^{\theta}(x)
\end{array}\right\}=\left\{\begin{array}{c}
\varphi_{j+1, m}^{u}(x) \\
\varphi_{j+1, m}^{\theta}(x)
\end{array}\right\}-\sum_{k \in A \in(j, m)} \mathbf{S}_{j}^{T}[k, m]\right\}\left[\begin{array}{c}
\varphi_{j, k}^{u}(x) \\
\varphi_{j, k}^{\theta}(x)
\end{array}\right\}
$$

$\sum_{k \in A(j, m)}\left[\int_{s} x_{i}^{i}\left\{\varphi_{j, k}^{u}(x)\right.\right.$
$\left.\left.\varphi_{j, k}^{\theta}(x)\right\} d x\right] \mathbf{S}_{j}[k, m]=\int_{s,} x^{i}\left\{\varphi_{j+1, m}^{u}(x)\right.$
$\left.\varphi_{j+1, m}^{\theta}(x)\right\} d x$
ninn

