Course 18.327 and 1.130 Wavelets and Filter Banks

Filter Banks (contd.): perfect reconstruction; halfband filters and possible factorizations.

Product Filter

Example: Product filter of degree 6 $P_{0}(z) = \frac{1}{16} (-1 + 9z^{-2} + 16z^{-3} + 9z^{-4} - z^{-6})$ $P_{0}(z) - P_{0}(-z) = 2z^{-3}$ $\Rightarrow \text{Expect perfect reconstruction with a 3 sample delay}$ Centered form: $P(z) = z^{3}P_{0}(z) = \frac{1}{16} (-z^{3} + 9z + 16 + 9z^{-1} - z^{-3})$ $P(z) + P(-z) = 2 \quad i.e. \text{ even part of } P(z) = \text{ const}$ In the frequency domain: $P(\omega) + P(\omega + \pi) = 2$ Halfband Condition

Some possible factorizations $H_0(z)$ (or $F_0(z)$) $F_0(z)$ (or $H_0(z)$)		
(a) (b) (c) (d) (e) (f) (g)	1 $\frac{1}{\frac{1}{2}(1 + z^{-1})}$ $\frac{1}{4}(1 + z^{-1})^{2}$ $\frac{1}{2}(1 + z^{-1})(2 + \sqrt{3} - z^{-1})$ $\frac{1}{8}(1 + z^{-1})^{3}$ $\frac{(\sqrt{3} - 1)}{4\sqrt{2}}$ (1 + z ⁻¹) ² (2 + $\sqrt{3} - z^{-1})$ $\frac{1}{1}(16(1 + z^{-1})^{4})^{4}$	$\begin{array}{c} -1/16(1+z^{-1})^4(2+\sqrt{3}-z^{-1})(2-\sqrt{3}-z^{-1})\\ -1/8(1+z^{-1})^3(2+\sqrt{3}-z^{-1})(2-\sqrt{3}-z^{-1})\\ -1/4(1+z^{-1})^2(2+\sqrt{3}-z^{-1})(2-\sqrt{3}-z^{-1})\\ -1/8(1+z^{-1})^3(2-\sqrt{3}-z^{-1})\\ -1/2(1+z^{-1})(2+\sqrt{3}-z^{-1})(2-\sqrt{3}-z^{-1})\\ \hline \\ -\frac{-\sqrt{2}}{4(\sqrt{3}-1)}(1+z^{-1})^2(2-\sqrt{3}-z^{-1})\\ -(2+\sqrt{3}-z^{-1})(2-\sqrt{3}-z^{-1})\end{array}$
		5

 $P(z) = z^{\ell}P_{0}(z)$ = H₀(z) H₀(z⁻¹) From alias cancellation condition: H₁(z) = F₀(-z) = -z⁻³ H₀(-z⁻¹) F₁(z) = -H₀(-z) = z⁻³ H₁(z⁻¹)

19

