Course 18.327 and 1.130 Wavelets and Filter Banks

Filter Banks (contd.): perfect reconstruction; halfband filters and possible factorizations.

Product Filter

Example: Product filter of degree 6

$$
\begin{aligned}
& P_{0}(z)=\frac{1}{16}\left(-1+9 z^{-2}+16 z^{-3}+9 z^{-4}-z^{-6}\right) \\
& P_{0}(z)=P_{0}(-z)=2 z^{-3}
\end{aligned}
$$

\Rightarrow Expect perfect reconstruction with a 3 sample delay
Centered form:

$$
\begin{aligned}
& P(z)=z^{3} P_{0}(z)=\frac{1}{16}\left(-z^{3}+9 z+16+9 z^{-1}-z^{-3}\right) \\
& P(z)+P(-z)=2 \text { i.e. even part of } P(z)=\text { const }
\end{aligned}
$$

In the frequency domain:

$$
P(\omega)+P(\omega+\pi)=2 \quad \text { Halfband Condition }
$$

Note antisymmetry about $\omega=\pi / 2$
$P(\omega)$ is said to be a halfband filter.

How do we factor $P_{0}(z)$ into $H_{0}(z) F_{0}(z)$?

$$
\begin{aligned}
P_{0}(z) & =1 / 16\left(1+z^{-1}\right)^{4}\left(-1+4 z^{-1}-z^{-2}\right) \\
& =-1 / 16\left(1+z^{-1}\right)^{4}\left(2+\sqrt{3}-z^{-1}\right)\left(2-\sqrt{3}-z^{-1}\right)
\end{aligned}
$$

So $P_{0}(z)$ has zeros at

$$
\begin{aligned}
& z=-1\left(4^{\text {th }} \text { order }\right) \\
& z=2 \pm \sqrt{3}
\end{aligned}
$$

Note: $2+\sqrt{3}=\frac{1}{2-\sqrt{3}}$

Case (c) -- Symmetric filters (linear phase)

filter length $=3$
$1 / 4\{1,2,1\}$

filter length $=\mathbf{5}$
$1 / 4\{-1,2,6,2,-1\}$

General form of product filter (to be derived later):
$P(z)=2\left(\frac{1+z}{2}\right)^{p}\left(\frac{1+z^{-1}}{2}\right)^{p} \sum_{k=0}^{p-1}(p+k-1)\left(\frac{1-z}{2}\right)^{k}\left(\frac{1-z^{-1}}{2}\right)^{k}$
$P_{0}(z)=Z^{-(2 p-1)} P(z)$
$=\left(1+z^{-1}\right)^{2 p} \frac{1}{2^{2 p-1}} \sum_{k=0}^{p-1}(p+k-1)(-1)^{k} z^{-(p-1)+k\left(\frac{1-z^{-1}}{2}\right)^{2 k}, ~}$

Binomial (spline) filter

Q(z)
Cancels all odd powers except $z^{-(2 p-1)}$
$P_{0}(z)$ has $2 p$ zeros at π (important for stability of iterated filter bank.)
$Q(z)$ factor is needed to ensure perfect reconstruction.
$p=1$
$P_{0}(z)$ has degree $2 \rightarrow$ leads to Haar filter bank.

$F_{0}(z)=1+z^{-1}, H_{0}(z)=\frac{1+z^{-1}}{2}$
Synthesis lowpass filter has 1 zero at π
\rightarrow Leads to cancellation of constant signals in analysis highpass channel.
Additional zeros at π would lead to cancellation of higher order polynomials.

(b) 8/8 (Daubechies 8) -- Known in Matlab as db4

Why choose a particular factorization?

Consider the example with $p=2$:
i. One of the factors is halfband

The trivial $1 / 8$ factorization is generally not desirable, since each factor should have at least one zero at π. However, the fact that $F_{0}(z)$ is halfband is interesting in itself.

Let $F_{0}(z)$ be centered, for convenience. Then $F_{0}(z)=1+$ odd powers of z
Now

$$
X(z)=V\left(z^{2}\right)=\text { even powers of } z \text { only }
$$

So

$$
\begin{aligned}
Y(z) & =F_{0}(z) X(z) \\
& =X(z)+\text { odd powers } \\
y[n] & = \begin{cases}x[n] & n \text { even } \\
\sum_{k \text { odd }} f_{0}[k] x[n-k] ; & n \text { odd }\end{cases}
\end{aligned}
$$

$\Rightarrow f_{0}[n]$ is an interpolating filter
Another example: $f_{0}[n]=\frac{\sin \left(\frac{\pi}{2}\right) n}{\pi n}$ (ideal bandlimited interpolating filter)

ii. Linear phase factorization e.g. 2/6, 5/3

Symmetric (or antisymmetric) filters are desirable for many applications, such as image processing. All frequencies in the signal are delayed by the same amount i.e. there is no phase distortion.
$\mathrm{h}\left[\mathrm{n}\right.$] linear phase $\Rightarrow \mathrm{A}(\omega) \mathrm{e}^{-\mathrm{i}(\omega \alpha+\theta)}$

Linear phase may not necessarily be the best choice for audio applications due to preringing effects.
iii. Orthogonal factorization

This leads to a minimum phase filter and a maximum phase filter, which may be a better choice for applications such as audio. The orthogonal factorization leads to the Daubechies family of wavelets - a particularly neat and interesting case. 4/4 factorization:

$$
\begin{aligned}
H_{0}(z) & =\frac{\sqrt{3}-1}{4 \sqrt{2}}\left(1+z^{-1}\right)^{2}\left[(2+\sqrt{3})-z^{-1}\right] \\
& =\frac{1}{4 \sqrt{2}}\left\{(1+\sqrt{3})+(3+\sqrt{3}) z^{-1}+(3-\sqrt{3}) z^{-2}+(1-\sqrt{3}) z^{-3}\right\} \\
F_{0}(z) & =\frac{-\sqrt{2}}{4(\sqrt{3}-1)}\left(1+z^{-1}\right)^{2}\left[(2-\sqrt{3})-z^{-1}\right] \\
& =\frac{\sqrt{3}-1}{4 \sqrt{2}} z^{-3}\left(1+z^{2}\right)[(2+\sqrt{3})-z] \\
& =z^{-3} H_{0}\left(z^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
P(z) & =z^{\ell} P_{0}(z) \\
& =H_{0}(z) H_{0}\left(z^{-1}\right)
\end{aligned}
$$

From alias cancellation condition:

$$
H_{1}(z)=F_{0}(-z)=-z^{-3} H_{0}\left(-z^{-1}\right)
$$

$$
F_{1}(z)=-H_{0}(-z)=z^{-3} H_{1}\left(z^{-1}\right)
$$

Special Case: Orthogonal Filter Banks

Choose $\mathrm{H}_{1}(\mathrm{z})$ so that

$$
H_{1}(z)=-z^{-N} H_{0}\left(-z^{-1}\right) \quad N \text { odd }
$$

Time domain

$$
h_{1}[n]=(-1)^{n} h_{0}[N-n]
$$

$F_{0}(z)=H_{1}(-z)=z^{-N} H_{0}\left(z^{-1}\right)$
$\Rightarrow \quad f_{0}[n]=h_{0}[N-n]$
$F_{1}(z)=-H_{0}(-z)=z^{-N} H_{1}\left(z^{-1}\right)$
$\Rightarrow \mathrm{f}_{1}[\mathrm{n}]=\mathrm{h}_{1}[\mathrm{~N}-\mathrm{n}]$
So the synthesis filters, $f_{k}[n]$, are just the time-reversed versions of the analysis filters, $h_{k}[n]$, with a delay.

Why is the Daubechies factorization orthogonal? Consider the centered form of the filter bank:

In matrix form:

Analysis

$$
\left[\frac{y_{o}}{y_{1}}\right]=\underbrace{\left[\frac{L}{B}\right.}_{W}][x][x]=\underbrace{\left[L^{\top} \mid B^{\top}\right]}_{W^{\top}}\left[\frac{y_{0}}{y_{1}}\right]
$$

So

$$
x=W^{\top} W x \text { for any } x
$$

$$
\mathbf{W}^{\top} \mathbf{W}=\mathbf{I}=\mathbf{W} \mathbf{W}^{\top}
$$

An important fact: symmetry prevents orthogonality

Matlab Example 2

1. Product filter examples

Degree-2 ($p=1$): pole-zero plot

Degree-2 ($p=1$): Freq. response

Degree-6 (p=2): pole-zero plot

Degree-6 (p=2): Freq. response

Degree-10 ($p=3$): pole-zero plot

Degree-10 ($p=3$): Freq. response

Degree-14 (p=4): pole-zero plot

Degree-14 ($\mathrm{p}=4$): Freq. response

