
Appendix C

Stationary phase

See Stein’s book Harmonic analysis [?], chapter 8, as a reference on station-
ary phase and for proofs of the claims below.

If an integrand has a phase factor with no stationary points, and the am-
plitude is otherwise smooth, then the integral has a very small value because
the positive parts cancel out the negative parts. The following result makes
this heuristic precise as an asymptotic bound on the value of the integral
when the phase has a large prefactor.

Lemma 4. (The non-stationary phase lemma.) Let χ ∈ C∞0 (Rn), φ ∈
C∞(suppχ), and let

Iα =

ˆ
eiαφ(x)χ(x)dx.

Rn

If ∇φ(x) 6= 0 for all x ∈ suppχ, then

|Iα| ≤ Cmα
−m, for all m > 0.

Proof. Integrate by parts after inserting an m-th power of the differential
operator

I −∆x
L = ,

1 + α2|∇xφ(x)|2

which leaves the exponential factor unchanged. A fortiori, 1+α2|∇xφ(x)|2 >
Cα2 for some number C > 0. Deal with the odd values of m by interpolation
(geometric mean) from the m− 1 and m+ 1 cases.

If the phase otherwise has critical points, then the value of the integral
is mostly determined by the behavior of the integrand near those critical
points.
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Lemma 5. Consider the same setting as earlier, but consider the presence
of a point x∗ such that

∇φ(x∗) = 0, D2φ(x∗) invertible,

where D2φ denotes the Hessian matrix of φ. Assume that ∇φ(x) 6= 0 for
x 6= x∗. Then, as α→∞,(

2π
Iα =

α

)n/2
χ(x∗)eiαφ(x∗) ei

π
4
sgn(D2φ(x∗))√

det(D2φ(x∗))
+O(α−

n−1
2 ),

where sgn denotes the signature of a matrix (the number of positive eigenval-
ues minus the number of negative eigenvalues.)

See [?] for a proof. More generally, if there exists a point x∗ where all the
partials of φ of order less than or equal to ` vanish, but ∂`φ(x∗)/∂x`1 6= 0 in
some direction x1, then it is possible to show that Iα = O(α−1/`).

Here are a few examples.

• A good example for the above lemma is
ˆ ∞

eiαx
2 1
dx ∼

−∞
√ .
α

The real part of the integrand, cos(αx2), is non-oscillatory at the origin,
but develops significant oscillations as soon as x is on the order of√
±1/ α. The extent of the range over which the integrand essentially
does not oscillate (e.g., as measured from the length of the first half
period) determines the order of magnitude of the value of the integral.

• An important case not immediately handled by any of the previous
lemmas is the stationary phase explanation of the often-invoked fact
that1 ( )ˆ ˆ

ei(y−x)·ξdξ f(x)dx ∼ f(y).
Rn Rn

The large factor α of the stationary phase lemmas can be placed in the
exponent as iα(y − x) · ξ. The rescaling ξ′ = αξ quickly helps to get

1The actual value of the integral is (2π)nf(y). The function f is only required to be
continuous with some decay at infinity for this relation to make sense pointwise. Fourier
analysis makes all of this precise, of course.
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rid of it by turning it into a multiplicative 1/αn factor for the integral
above. Hence the equivalent, stationary-phase-friendly formulation of
the relation above is really( )ˆ ˆ

eiα(y−x)·ξ f(y)
dξ f(x)dx ∼

Rn Rn
.

αn

As a function of ξ alone, the phase φ(ξ) = (y−x) ·ξ has a critical point
when x = y , but the Hessian is degenerate: φ′′(ξ) = 0. We cannot
apply any of the stationary phase lemmas to the integral on ξ alone.

The solution is to consider the double integral over x and ξ: the phase
φ(x, ξ) = (y− x) · ξ is still critical when x = y, and now ξ = 0, but the
Hessian matrix is ( ) ( )

2 ∇x∇xφ ∇ 0
φ x∇= ξφ −I

D = ,∇ξ∇xφ ∇ξ∇ξφ −I 0

which is invertible independently of the base point (x∗, ξ∗). Hence
lemma 5 applies in 2n dimensions, and actually predicts the exact value
of the integral, namely (2π/α)nf(y). The condition y = x signifies that,
of all the values of f(x), only that at x = y matters for the result of
the integral. The condition ξ = 0 is a manifestation of the fact that
f(x) was assumed to be minimially smooth (hence it is f̂(0) when ξ = 0
that matters). The function f may have oscillatory factors like ei 100ψ(x)

for some other phase ψ, but no factors of the form eiαψ(x) involving α
explcitly.

• Another interesting example is the integral( )ˆ ˆ
ei(y−x)·ξdξ

ˆ
eix·ηF (η)dη dx

Rn Rn

which often appears in Fourier analysis. It can be seen as the compo-
sition of an inverse Fourier transform of F , from η to x, followed by a
Fourier transform, from x to ξ, followed by an inverse Fourier trans-
form, from ξ to y. Indeed, the integral reduces to (an unimportant

ˇmultiple of 2π times) F (y). For fixed η we can still see the phase as
having two arguments, namely φ(x, ξ) = (y − x) · ξ + x · η, but the
equations for the critical points now look more symmetric:

∂φ ∂φ
= η − x = 0,

∂x ∂ξ
= y − x = 0,
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and D2φ is the same as previously. We now have x∗ = y and ξ∗ = η,
so φ(x∗, ξ∗) = y · η. Stationary phase over the inner (x, ξ) variables
then reduces the outer η integral to (a constant times)

´
eiy·ηF (η)dη,

as needed.

The relation η = ξ indicates that, in the course of the first two Fourier
transforms taking η to x, then to ξ, it is only the value of F at η =
ξ which matters to determine the result F (ξ). The relation x = y
indicates that, from the result f(x) of having done the first Fourier
transform from η to x, it is only the value f(y) at x = y which matters

ˇto determine the end result f(y) = F (y).

The set of equations
x = y, ξ = η

is a simple example of a so-called canonical relation in phase-space,
the space made of all the quadruples (x, ξ; y, η). In particular, it is
precisely the relation corresponding to the identity map from (x, ξ) to
(y, η). The adjective “canonical” refers to the fact that the map is
symplectic, i.e., preserves areas, which is instantiated in our context by
the fact that | detD2φ | = 1. Phase-space relations are introduced and
used in chapter 8.
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