HOMEWORK 8 (18.315, FALL 2005)

1) Give a direct combinatorial proof of the hook-length formula for the number of standard Young tableaux of shape $(n-2 k, 2, \ldots, 2), k$ times.
2) Fix a tree t with n vertices and root R. Let $S(v)$ denotes the shortest path from v to R. Let $\beta(v)$ be the number of vertices v^{\prime} such that $S(v) \subseteq S\left(v^{\prime}\right)$. E.g. $\beta(R)=n$, and $\beta(v)=1$ for every leaf $v \neq R$. Denote by $A(t)$ the set of bijections $\gamma: t \rightarrow[n]$ such that: $\gamma(v)<\gamma\left(v^{\prime}\right)$ for all vertices $v, v^{\prime} \in t$ with $S(v) \subseteq S\left(v^{\prime}\right)$; e.g. this implies that $\gamma(R)=1$. These bijections are called increasing trees of shape t. Prove that

$$
|A(t)|=\frac{n!}{\prod_{v \in t} \beta(v)} .
$$

3) Let Q be the set of partitions whose Young diagram is tileable by dominoes. Compute the generating function $\sum_{\lambda \in Q} t^{|\lambda|}$.
4) Let $\Gamma(\lambda)$ be a graph on $\operatorname{SYT}(\lambda)$, where two tableaux are connected by an edge if they differ at exactly two places. Prove that $\Gamma(\lambda)$ is connected. Prove the analogue of this result for increasing trees of the same shape.
5) Let p_{1}, \ldots, p_{n} be probabilities to be born on days $1, \ldots, n$ of the year (usually $n=365$). Let A be the event that k people (chosen independently) are all born on different days. Prove that $\operatorname{Pr}(A)$ maximizes when $p_{i}=1 / n$.
